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On Hořava-Lifshitz cosmology *
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Abstract: We give a brief overview of the Hořava-Lifshitz-gravity theory, its modifications and its impli-

cations in cosmology. In particular, we discuss the various issues on the gravitational scalar mode, including

its decoupling, its role as inflaton and its stability. Our analysis shows that the scalar mode could decouple

naturally at λ =1 due to the extra gauge symmetry. On the other hand, the fact that the scalar mode becomes

ghost when 1/3 < λ < 1 is a real challenge to the theory. We try to overcome this problem by modifying the

action such that the RG flow lies outside the problematic region. We discuss the cosmological implications of

the theory.
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1 Introduction

In the past few years, there have been very in-

teresting interplays between high energy physics and

condensed matter physics. On the one hand, the

applications of AdS/CFT correspondence to various

many-body strong coupling systems, ranging from

quark-gluon-plasma in RHIC, superfluids, ultra-cold

atoms to superconductor physics, are very fruitful.

The applications are based on two essential features

of AdS/CFT correspondence. One feature is that

the correspondence is a strong/weak duality, which

means that one can use weakly coupled gravity the-

ory to study the strongly coupled field theory problem

and vice versa. Another feature is that the AdS/CFT

correspondence allows us to study the real-time pro-

cess, which is otherwise inaccessible for other tradi-

tional field theory approaches.

On the other hand, condensed matter physics pro-

vides new concepts for high energy physics as well.

One typical example is the introduction of anisotropic

scaling. It turns out that in the quantum critical phe-

nomena, space and time may take different scaling

behavior,

x→ bx, t→ bzt, (1)

where z is the dynamical critical exponent charac-

terizing the anisotropy between space and time. In

the generic case that z 6= 1, the Lorentz symmetry is

broken. One may assign a scaling dimension to the

coordinates

[t]s =−z, [xi]s =−1. (2)

The first field theory model exhibiting the above

anisotropic scaling is the Lifshitz scalar field theory

with the critical exponent z = 2 [1], which has the

action

L=

∫
d2xdt((∂tφ)2−λ(∇2φ)2) . (3)

It has a line of fixed points parameterized by λ.

Such fixed points with anisotropic scale invariance

are usually called Lifshitz points. One interesting fea-

ture of the above action is that it satisfies the so-

called detailed balance condition, which allows the

(2+1)-dimensional theory to be related to a 2D mass-

less scalar conformal theory directly. In fact, in the

Schrodinger picture, the ground wave functional and

even the correlation functions of (3) could be calcu-

lated from 2D field theory. Moreover, after being

turned on the relevant perturbations

∼
∫
d2xdt(−µ2(∂iφ)2 +m4φ2), (4)

the theory could be RG flowed to a theory with z= 1

at IR. At IR, the Lorentz symmetry appears as an ac-

cidental symmetry. Another remarkable fact is that
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in this model, the speed of light µ is emergent and is

not a constant anymore.

The Lifshitz scalar field theory and its general-

izations have been used to study the quantum phase

transitions in various strongly correlated electron sys-

tems. Moreover, in Ref. [2], a construction on the

non-Abelian gauge theories with z = 2 in arbitrary

dimensions was presented. In Ref. [3], a general con-

struction of renormalizable scalar and gauge field the-

ories with arbitrary critical exponent z has been pre-

sented. For the field theories at the Lifshitz point, the

Lorentz symmetry is broken explicitly by construc-

tion, and consequently the dispersion relation of the

physical mode gets modified. This provides a natural

framework to address the issues related to Lorentz

symmetry breaking; for example, the time delays in

Gamma-Ray bursts [3].

Another important feature of Lifshitz-like field

theories is that they have better UV behaviors, due

to the anisotropic scaling. For example, for ordinary

Yang-Mills field, it is only renormalizable when the

spacetime dimension is not greater than four, while

for a Yang-Mills field with z > 2, it could still be

renormalizable in five or even higher dimensions. This

fact indicates that a gravity theory with anisotropic

symmetry may also be renormalizable. This possibil-

ity has been investigated in Refs. [4, 5] and the follow-

ing works. It was found that the gravity theory with

anisotropic scaling has better UV behavior, and even

though the theory involves higher derivative terms, it

is still unitary.

In this article, we would like to give a brief review

of the Hořava-Lifshitz-like gravity. We do not dis-

cuss all of the issues on the Hořava-Lifshitz gravity.

Instead, we pay more attention to its cosmological

implications. In the next section, we outline the con-

struction of the Hořava-Lifshitz gravity and its gen-

eralization. In Section 3, we discuss the cosmological

implications of the Hořava-Lifshitz-like gravity theo-

ries. We end with some discussions about the open

issues on Hořava-Lifshitz gravity1).

2 Hořava-Lifshitz gravity and its mod-

ifications

Diffeomorphism is essential to Einstein’s relativ-

ity theory of gravity. It has been widely believed

to be exact in any theory of gravity. However, in

the recent proposal by Hořava [4, 5] on gravity the-

ory, it is no longer an exact symmetry. Due to the

anisotropy, instead of diffeomorphism, we have the

so-called foliation-preserving diffeomorphism. The

transformation is now just

t → t̃(t),

xi → x̃i(xj , t), (5)

which is generated by infinitesimal transformation,

δt= ξ0(t), δxi = ξi(t,~x). (6)

Since time direction plays a privileged role in the

whole construction, it is more convenient to work with

ADM metric,

ds2 =−N 2dt2 +gij(dx
i +N idt)(dxj +N jdt). (7)

Here, N is the lapse function andN i is called the shift

variable. Both N and Ni are not dynamical variables.

In fact, in Einstein’s general relativity, the variations

with respect to N and Ni give the super-Hamiltonian

and super-momentum constraint, respectively. The

physical degrees of freedom resides in the spatial met-

ric components, modulo the gauge transformations to

be discussed below. Due to the scaling (2), the scaling

dimensions of the metric components are

[gij ]s = 0, [Ni]s = z−1, [N ]s = 0.

It would be interesting to study the case with a

generic value of z. However, in this paper, we only

focus on z= 3.

The transformation (5) leads to the following

gauge transformations on the metric components,

δgij = ∂i ξ
kgjk +∂j ξ

kgik +ξk ∂k gij +ξ0ġij ,

δNi = ∂i ξ
jNj +ξj ∂jNi + ξ̇

jgij + ξ̇0Ni +ξ
0Ṅi,

δN = ξj ∂jN+ ξ̇0N+ξ0Ṅ . (8)

The above transformations could be obtained by tak-

ing a nonrelativistic limit of usual relativistic dif-

feomorphisms. It is more convenient and natural to

choose N being projectable, just the function of t.

There are a few advantages in working with this

choice. With this choice, the gauge symmetry is sim-

pler and transparent. Furthermore, in the Hamilto-

nian formulation, the constraints could form a closed

algebra since the momentum conjugate to N does not

lead to a local constraint [4]. As a result of fewer con-

straints than standard GR, the physical degrees of

freedom in the theory includes not only the massless

gravitons but also another propagating scalar. The

existence of extra scalar field has profound meaning

in cosmology. On the other hand, if one abandons the

1)There are a large number of research papers on the Hořava-Lifshitz-like gravity. Due to the limited space, we will not include

all of them in the paper. Interested reader may search them easily from the papers listed in the References.
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projectability condition and lets N be the function of

both t and xi, one will find that the theory will be

ill-defined, as shown in Refs. [4, 6].

At the special value λ = 1, the theory develops

an enhanced time-independent U(1) gauge symmetry

acting via

δNi = ∂i ε, δgij = 0. (9)

Due to the existence of extra gauge symmetry, the

scalar mode is not physical anymore. It is remarkable

that even with this extra gauge symmetry, the total

gauge symmetries are different from the usual diffeo-

morphisms in general relativity. In other words, the

diffeomorphisms have not been recovered at λ = 1.

This fact is essential to understand why at λ = 1

the extra scalar degree of freedom could be decou-

pled without trouble.

In terms of the ADM metric, the action of original

Hořava-Lifshitz gravity theory can be written as [5]

Sg =

∫
dtd3

x

√
gN

{

2

κ2
KijG

ijklKkl−
κ2

2

[

1

ω2
Cij

−µ
2

(

Rij −
1

2
Rgij +ΛWgij

)

]

·Gijkl

[

1

ω2
Cij

−µ
2

(

Rij −
1

2
Rgij +ΛWgij

)

]}

, (10)

where Kij is the extrinsic curvature of the spatial hy-

persurface; Cij is the Cotton tensor, which can be

used to preserve the detailed-balanced condition in

constructing the action; Gijkl is the De Witt metric

on the space of metrics that preserve the anisotropic

diffeomorphism, and Rij is the Ricci tensor in spatial

hypersurface. Their definitions are

Kij =
1

2N
(ġij −∇iNj −∇jNi), (11)

Cij = εikl∇k

(

Rj
l−

1

4
Rδj

l

)

, (12)

Gijkl =
1

2

(

gikgjl +gilgkl
)

−λgijgkl. (13)

Here and throughout the paper, a dot over the quan-

tity means taking the derivative with respect to the

cosmic time t, while a prime denotes that to co-

moving time η. The first term in (10) involving only

the extrinsic curvature is the kinetic term, while the

others are potential terms. λ is the coupling constant

in the kinetic term, and runs expectedly to λ= 1 at

IR regime at which the kinetic term goes back to the

one in the general relativity. This specific form of the

action is governed by the detailed-balance condition,

which is just applied by Hořava for convenience to

decrease the number of arbitrary parameters. The

expansion of the action gives

Sg =

∫
dtd3

x

√
gN

{

2

κ2
(KijK

ij −λK2)− κ2

2ω4
CijC

ij

+
κ2µ

2ω2
εijkRil∇jR

l
k−

κ2µ2

8
RijR

ij

+
κ2µ2

8(1−3λ)

(

1−4λ

4
R2 +ΛWR−3Λ2

W

)}

. (14)

Comparing this action with the Einstein-Hilbert ac-

tion in the IR limit,

SEH =
1

16πG

∫
d4x

√
gN{(KijK

ij−K2)+R−2Λ}, (15)

with x0 ≡ ct, we can recover the speed of light, New-

ton constant and the cosmological constant by the

parameters introduced before,

c=
κ2µ

4

√

ΛW

1−3λ
, G=

κ2

32πc
, Λ=

3

2
ΛW. (16)

Thus at IR the theory recovers nearly the usual gen-

eral relativity, with the higher derivative terms of spa-

tial metric components as the modifications. Even

though the higher derivative terms are highly sup-

pressed at IR, strictly speaking, the theory always

breaks the diffeomorphism, and therefore the locally

Lorentz invariance.

In Hořava’s original paper [5], the coupling con-

stant λ is expected to run to 1 in the IR limit. And

at UV, because of the anisotropy between space and

time, the speed of light is not a constant and may be

extremely large, which could be used to explain the

horizon and flatness problem. But from (16) we know

that this can only occur in the case λ< 1/3 if we take

Λ to be positive, taking into account the fact that Λ

is directly related to the cosmological constant. How-

ever, this raises the worry that the marginal coupling

constant λ can never run to its infrared value λ= 1,

which is directly in contrast with our former descrip-

tion. To solve this problem, it was proposed that

one should carry out analytical continuation on the

parameters [7],

µ→ iµ, ω→−iω, (17)

which leaves the action real. And under this contin-

uation, we see from (16) that

c=
κ2µ

4

√

ΛW

3λ−1
, (18)

and there is no conflict between Λ > 0 and λ > 1/3.

And when λ → 1/3 proposed by Hořava as the ul-

traviolet value of this coupling constant, we have a
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very large speed of light, which can naturally solve

the casuality problem in cosmology without inflation.

The action given above was constructed with re-

spect to the detailed balance condition. However, the

detailed balance condition may not be essential to

the theory. This is because even with the detailed

balance condition, the ground state eigenfunctional

is not normalizable. As pointed out in Ref. [5], im-

posing such a condition is just pragmatic to simplify

the action. In principle, one may relax this condi-

tion and consider a more general form of the action.

For the theory to be power-counting renormalizable,

the allowed terms are limited. The kinetic term is

completely fixed, with the scaling dimension six. The

potential terms should be gauge invariant, with the

scaling dimension not greater than six. The marginal

ones could be a combination of

∇kRij∇kRij , ∇kRij∇iRjk, R∆R,Rij∆Rij ,

R3, Ri
jR

j

kR
k
i , RRijR

ij ,

and the relevant ones could be quadratic in the Ricci

tensor and Ricci scalar, or linear in the Ricci scalar.

The most general form of the action without the de-

tailed balance condition could be found in Ref. [8]. In

this paper, we do not want to consider the most gen-

eral form of the action. Instead, we just consider the

marginal spatial kinetic part and most relevant defor-

mations, besides the time kinetic terms. The action

we start with is of the form

Sg =

∫
dtd3

x

√
gN

{

α(KijK
ij −λK2)+ξ(λ)R

+σ(λ)−β
(

β1∇iRjk∇iRjk +β2∇iRjk∇jRik

+β3∇iR∇iR
)}

. (19)

Here we only keep the marginal terms that are power-

counting renormalizable and dominant in the UV

limit, besides the lower-dimensional terms to recover

IR behaviors.

It is remarkable that the gravitational scalar mode

is not always physical. Actually, from the perturba-

tions around the flat spacetime, it was found that the

scalar mode became a ghost when the parameter l

lies between
1

3
and 1 [5]. This is also true for the

perturbations around the FRW universe [9]. The ex-

istence of the ghost is fatal to the theory. It means

that the theory is not well defined, not mentioning

UV completeness. One may expect that we can al-

ways work in the region outside l∈ [1/3,1]. However,

this cannot be guaranteed, considering our ignorance

of the details of RG flow. On the other hand, in the

practical application in cosmology, one wishes the RG

flow to be from l ∼ 1/3 to l = 1 in original Hořava-

Lifshitz gravity. We take a modest attitude and try

to modify the Hořava-Lifshitz gravity such that the

RG flow may happen always with l > 1.

Because of the breakdown of the detailed balance

condition, the coupling constants before each term are

independent. The couplings could be connected to

the speed of light, the Newtonian coupling constant

and the cosmological constant of Einstein’s general

relativity in the IR limit,

c2 =
ξ

α
, (20)

16πG =
1

cα
, (21)

Λ = − σ

2ξ
. (22)

Here we see that c2 can be positive, if we choose a

proper form of the function ξ(λ). Furthermore, we

can require c to be very large when λ is near its ultra-

violet value. In Hořava’s original paper, he suggested

λ→ 1/3 at the UV limit, which gives a large speed of

light in (16) or (18). Here we only take this condition

as a constraint on the function ξ(λ). For instance

if the theory requires λ to be larger than unity at

UV as we will propose as a condition to exclude the

ghost field, the function ξ(λ) may be divergent when

λ tends to infinity.

3 Cosmological implication

For our use, let us have a glance at the classical

dynamics of the universe under such an action. In a

homogenous and isotropic universe,

ds2 =−dt2 +a2hijdx
idxj , hij = δij +

Kxixj

1−Kx
2
, (23)

where K is the parameter to describe the spatial cur-

vature. Under this metric, the universe is homoge-

neous and isotropic, which will greatly simplify the

following discussions. To apply our foliated diffeomor-

phism, we need to use the ADM formalism of this

Robertson-Walker metric, with the extrinsic curva-

ture and the Ricci tensor to be

Kij = H(t)gij , K = 3H(t), (24)

Rij =
2K
a2
gij , R=

6K
a2
, (25)

where H(t) = ȧ/a is the Hubble parameter.

We take the variation of the action (19) with re-
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spect to N , and have our first equation of constraint,∫√
g

[

− 2

κ2
(KijKij −λK2)+ζR+σ

]

d3
x =

∫√
gρd3

x.

(26)

Here, ρ is the energy density of the Lifshitz matter in

the universe, and can be written

ρ=− 1√
g

δSm

δN
, (27)

where Sm is the action of matter field, which can be

a Lifshitz scalar, gauge field or something else. Be-

cause of the projectability of the lapse function N(t),

we only have a spatial-integral constraint here. This

is generic for all of the Hořava-like models with a

projectable lapse function N(t) [8]. But, for a homo-

geneous and isotropic Friedman universe, this con-

straint equation is valid at every point, and the inte-

gral can be removed legally. Thus we have the first

Friedman’s equation [7],

H2 =
c2

3α(1−3λ)

[

−ρ+
6K
a2
ξ(λ)+σ(λ)

]

. (28)

Since ρ is the energy density of matter and radiation,

σ(λ) plays the role of “cosmological constant”. Here,

it is a function of λ and evolves when λ varies as

the energy scale changes. This implicant dependence

may be treated carefully when we are facing prob-

lems like the evolution of dark energy or the tilt of

the power spectrum. But because the dependence of

λ on the cosmic time is unknown, we will neglect this

dependence and suppose that in the process we are

interested in, the change in σ(λ) is so small that it

will not have any significant physical effect, and so is

H(λ). We see from (28) that if the universe is flat and

dominated by the cosmological constant, for some λ

greater than 1/3, we must have σ(λ> 1/3)< 0, which

means that we have a positive cosmological constant

Λ> 0 at IR, since from (20), ξ(λ> 1/3) is always pos-

itive. These two conditions guaranteed the positivity

of the cosmological constant and H2. If the mat-

ter/radiation contribution could be ignored safely, the

homogenous and isotropic solution is a pure de-Sitter

spacetime, with an exponentially expanding scale fac-

tor a(t)∝ exp(Ht).

The second equation of constraint is obtained by

taking the variation in the action with respect to the

shift vector Ni,

∇i(K
ij −λKgij) = 0. (29)

Because the extrinsic curvature is homogeneous in a

Friedman universe, as in (24), Kij ∝ gij , this equation

is trivially satisfied for the background evolution. But

it will supply a perturbative constraint equation up to

the first order if the perturbations to the background

metric are under consideration.

Finally, taking the variation of action (19) with

respect to gij , we have the equation of motion of dy-

namical degree of freedom. The explicit expression is

rather lengthy and has little to do with our following

discussion, so we would like not to write it here.

In the remaining part of this section, we would like

to discuss an interesting physical implication of the

gravitational scalar mode. We will show that there is

no need to introduce a scalar inflaton to seed the large

scale structure. Instead, the gravitational scalar may

play the role of inflaton. At the first step, let us re-

view briefly the cosmological perturbation around flat

FRW universe in Hořava-Lifshitz-like gravity. The

perturbed metric is of the form

ds2 = −dt2 +a(t)2δijdx
idxj

= a2(η)(−dη2 +δijdx
idxj). (30)

Here we use the co-moving time η =

∫
dt/a as a time

variable. The fluctuations around the ADM metric

could be

N = a(η)(1+A), (31)

Ni = a(η)(∂iB+Vi), (32)

gij = a2(η){(1−2ψ)δij −∂i ∂jE−2∂(iFj) +hij}, (33)

where A,B,ψ,E are the scalar perturbations, Vi and

Fj are the vector perturbations, and tij is the gauge-

invariant tensor perturbation describing the gravita-

tional wave. Let us focus on the scalar perturbation,

and work with the gauge1)

A= 0, E= 0. (34)

Then the perturbed action of the gravitational field

up to the second order can be written as

S(2) =

∫
dtd3

x

{

3αa3(1−3λ)

[

2

3

ψ̇2

1−λ+6Hψψ̇

+9H2ψ2

]

− 2β

a3
(3β1 +2β2 +8β3)ψ∂6

ψ

−2aξ(λ)ψ∂2
ψ

}

. (35)

Several remarks are in order:

1) From the action, it is obvious that the scalar

mode ψ is physical when λ < 1/3 and λ > 1, while

1)For a detailed discussion on the gauge transformations of the cosmological perturbations, please see Refs. [9, 10].
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when 1/3 < λ < 1 the mode is a ghost, indicating

that the theory is not well-defined. At the special

value λ= 1, the mode is decoupled, as we will clarify

below. And at λ = 1/3, the theory has extra sym-

metry, as discussed carefully in Ref. [5]. This fact is

the same as the one found in Refs. [4, 5] where the

perturbations around the flat spacetime were studied.

2) More interestingly, the equation of motion of ψ

takes the following form,

1−3l

1− l ψ̈+ · · · . (36)

This indicates that when l → 1, the scalar field ψ

could be decoupled naturally, in contrast with the

claim in Ref. [11]. It seems that the strong coupling

problem does not exist in our case.

3) The absence of the strong coupling problem

may stem from the fact that we take different points

of view on gauge transformations. In our case,

we stick to the requirement that the lapse func-

tion should be projectable, as originally advocated

in Ref. [5]. As a result, we do not expect that the

diffeomorphism is recovered at λ = 1. Instead, the

decoupling of the extra scalar mode comes from the

fact that there is extra gauge symmetry at l = 1.

This is conceptually different from the case studied

in Ref. [11] and Fierz-Pauli massive gravity.

4) Technically, it is remarkable that the equation

of motion of ψ has a prefactor proportional to 1/(1−l)
rather than (1− l). This difference has significant

physical implications. In our case, this means that

the scalar mode could be decoupled without trou-

ble. Another way to see this is to cast the scalar

mode into canonical form such that the mode be-

comes non-physical at l = 1. It is remarkable that

in Refs. [4, 5], the equation of motion of the scalar

mode around the flat spacetime background has the

prefactor (1− l). However, this is due to different

gauge choice. It has been shown by rescaling the field

that one has the same equation of motion. In fact, no

matter what kind of gauge choice, the physical dis-

persion relation is exactly the same. This suggests

that for the cosmological perturbations, the different

gauge choice would not lead to a different dispersion

relation. Namely, the extra scalar mode may decou-

ple naturally as l→ 1.

From the above discussion, we know that the clas-

sical evolution of the scale factor in the Hořava era

is determined by (28). In particular, when the cos-

mological constant is dominant and the universe is

flat, the evolution is the exponential expansion like

in a de Sitter phase. Now the Hubble parameter is

a constant. For convenience, we define a conformal

time η with dt= adη and introduce an auxiliary field

χ= aψ. After taking the variation with respect to ψ,

and changing to the momentum space, we have

χ′′(η)+

(

k6H4L̄4η4 +c2sk
2− 2

η2

)

χ(η) = 0, (37)

where

c2s =
1−λ
1−3λ

c2 (38)

is the speed of sound, and

L̄=
L

2π
, L= 2π

[

β

α

1−λ
1−3λ

(3β1 +2β2 +8β3)

] 1

4

(39)

is the characteristic length, which denotes the scale

where the trans-Planckian effects become significant.

Either from the WKB approximation or from

the method introduced to study the trans-Planckian

physics, one can calculate the power spectrum of the

gravitational scalar and find it to be scale invariant.

This is not surprising since the classical evolution is

a de-Sitter space, which is time translationally in-

variant. The interesting point is that even the clas-

sical evolution is not purely in de-Sitter phase due

to the presence of matter, the scalar power spectrum

is still scale invariant. This is because the gravita-

tional scalar is dimensionless and so is insensitive to

the scale transformation [3, 12]. However, it should

be noted that this is not true for the original Hořava-

Lifshitz cosmology due to the detailed balance con-

dition [13]. For the details of calculation, please see

Refs. [9, 13].

4 Conclusion and discussion

The Hořava-Lifshitz gravity is a theory with

anisotropic scaling. In this theory, time plays a priv-

ileged role. The usual diffeomorphism is replaced by

the foliation-preserving diffeomorphism. As a result,

there is an extra degree of freedom. Such a degree

of freedom is consumed by the extra gauge degree of

freedom when l= 1. One attractive feature of the the-

ory is that it is power-counting renormalizable and is

expected to have better UV behaviors. Another in-

teresting feature is that the gravitational scalar may

play the role of inflaton and seed the large scale struc-

ture of our universe, as discussed before.

One concern of the Hořava-Lifshitz-like gravity is

whether the theory is well- defined. The debate in

the literature focused on if one should choose the

lapse function to be the only the function of time,

or in other words, if the lapse function should be

projectable. The different choice seems to lead to

completely different physics. For example, it was
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found that without the projectability condition, there

were new static spherically symmetric solutions to the

Hořava-Lifshitz gravity and its modifications [7, 14].

These new solutions may have profound physical

implications in solar system tests. However, it is

proved in Ref. [15] that these new solutions do not

respect the projectability condition, and actually the

only nontrivial solution besides the vacuum is the

Schwarzschild-de-Sitter solution. From our point of

view, the theory with the projectability condition gets

rid of the pathologies found in Refs. [4, 6] and is sim-

ply well defined.

Another concern of the Hořava-Lifshitz-like grav-

ity is with regard to the possible strong coupling of

the gravitational scalar to the matter at IR [11]. Ac-

tually, this would not happen. The key point is that

the diffeomorphism is only an approximate symmetry

even at IR. The breakdown of full diffeomorphism at

the IR fixed point suggests that the usual Stuckel-

berg trick used in the analysis in Ref. [11] could not

be used directly, especially taking into account the

projectability condition. We have shown in Section 3

that the gravitational scalar could be decoupled nat-

urally.

However, the theory may suffer from other

pathologies. One concern is the existence of the

ghost excitation. We showed that as the perturba-

tions around the flat spacetime, the scalar perturba-

tion around the flat FRW universe could be a ghost

in the parameter region
1

3
< l < 1. The presence of

the ghost mode is a serious challenge to the theory.

The nature of the power spectra studied is purely

gravitational. In particular, in the language of ortho-

dox cosmology, the scalar perturbation is expected to

set up the initial conditions and seed the anisotropy of

large scalar structure in our universe. Some work has

been done to reveal the evolution of perturbations af-

ter inflation in the Hořava-Lifshitz gravity [16]. After

inflation ends, this gravitational perturbation must

be converted into CMB anisotropy and matter in-

homogeneity through some post-inflation evolotions.

But still we do not know yet how to couple the gravi-

tational scalar mode with, for instance, the radiation.

This is an interesting issue, which we would like to

study in the future.

One essential issue in the Hořava-Lifshitz gravity

is its RG flow. In Ref. [17], it has been shown that in

the Lifshitz-like scalar field theory, the RG flow may

not lead the theory to the fixed point we want. Con-

sidering the numbers of the parameters in modified

Hořava-Lifshitz gravity, this raises the concern if the

theory can flow to IR fixed point λ = 1. Moreover,

the details of RG flow can tell us if we can avoid

the dangerous region, where the ghost excitation ap-

pears, even we start from a safe region. Furthermore,

RG flow may be closely related to the physics in the

inflationary era. It is not clear whether RG flow of

the theory runs to its IR fixed point before the infla-

tionary era. If it does, then the gravitational scalar is

not dynamical and has nothing to do with inflation.

Even if the energy scale to reach the IR limit is lower

than the inflation era, there is an important question

to answer: Did λ vary significantly in the inflationary

era? The variation in l may tilt the power spectra and

has interesting physical implications. In any case, the

behavior of the Hořava-Lifshitz gravity theory under

RG flow deserves careful investigation.
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