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Spectral distributions of the scattered photons within

an acceptance angle in Thomson scattering *
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Abstract: In this paper, we present the analysis of the spectral distributions of the scattered photons within

a certain acceptance angle in Thomson scattering, in which the beam divergence, energy spread and spatial

distribution are all considered. The analytical results are compared with the simulation results, and good

agreement between the two approaches is obtained.
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1 Introduction

The X-ray source based on Thomson scattering

has broad application prospects in biology, physics,

materials, photochemical engineering and medicine,

for the short time structure, high peak brightness,

and the feature of quasi-monochromaticity within a

certain direction. In recent years, a larger number

of universities and research institutions have built

Thomson scattering systems and conducted experi-

ments on them. The Accelerator Laboratory of Ts-

inghua University has also carried out the relevant

aspects of the work.

In the Thomson scattering process, one of the

main features of the generated X-ray is the spec-

tral distributions within a certain acceptance angle.

Tomassini did theoretical analysis of the spectral dis-

tributions in his paper [1]. However, it is only under

the case that all electrons move exactly along the z di-

rection colliding with a plane-wave laser propagating

along the −z direction, and the electron beam diver-

gence and energy spread are both ignored. When he

compared the analytical results with the simulation

results of Thomson scattering, the difference is very

obvious.

In this paper, theoretical analysis of the spectral

distributions of the scattered photons within a certain

acceptance angle is presented, in which the beam di-

vergence, energy spread and spatial distribution are

all considered. Good agreement is obtained between

the analytical approach and numerical approach.

2 Spectral distributions of the scat-

tered photons within a certain ac-

ceptance angle for a single electron

For a single photon colliding with a laser beam,

the number of scattered photons per unit solid angle,

per unit time is given by [2]

dNs

dΩdt
= c

(

1− ~β ·~k
c

ω

)

nγ(r, t)
dσ

dΩ
. (1)

We can get

dNs

dωsdt
= (1−cosθ0)cnγ(r, t)

dσ

dωs

, (2)

where σ is the Thomson cross section, nγ is the pho-

ton density at the position r of the electron, ~k is the

incident wave vector, θ0 is the angle of the scattered

photon direction from the direction of the electron

in the lab frame, and ωs is the scattered photon fre-

quency.

In the electron rest frame, according to the Klein-

Nishina Formula, the cross section per unit solid angle
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is given by [3]

dNs

dΩ′
=

1

2
r2
0

(

ω′

ω

)2(
ω′

ω
+

ω

ω′
−sin2 θ′

)

, (3)

where ω, ω′ are the incident photon frequency and

the scattered photon frequency, and θ′ is the angle

of the scattered photon direction from the incident

photon in the electron rest frame.

In the Compton scattering process,

ω′

ω
=

1

1+
ω

m
(1−cosθ′)

≈ 1. (4)

We get

dσ′

dΩ′
≈

1

2
r2
0

(

ω′

ω

)2

(1+cos2 θ′). (5)

Now we suppose that in the lab frame the angle

of the electron and the incident light is π− θe, and

the electron incident direction is ~ze axis, and in the

electron rest frame the angle of the incident light and

~ze axis is π−θ′

e. According to Lorentz transformation

we have

cosθ′

e =
cosθe +β

1+β cosθe

. (6)

From Eq. (6) we get

sinθ′

e =
1

γ

sinθe

1+β cosθe

. (7)

As γ � 1, obviously θ′

e → 0. This means that, in

the electron rest frame, the incident light direction

is very close to the ~ze direction. Hence θ′ in Eq. (3)

can be approximately regarded as the angle of the

scattered photon and ~ze axis. We get

cos(π−θ′) =
cosθ−β

1−β cosθ
, (8)

where θ is in the angle of the scattered photon and ~ze

in the lab frame. According to Lorentz transforma-

tion we also have

dσ

dΩ
=

dσ′

dΩ

1−β2

1−β cosθ
. (9)

We put Eq. (5) and Eq. (8) into Eq. (9) and get

dσ

dΩ
= r2

0

[

1−
θ2

γ2(1−β cosθ)2

]

1

γ2(1−β cosθ)2

≈ r2
0

4γ2

(1+θ2γ2)

[

1−
2θ2γ2

(1+θ2γ2)2

]

. (10)

According to Lorentz transformation we have

ω0

ω
=

1

γ(1−β cosθ0)
, (11)

ωs

ω′
=

1

γ(1−β cosθ)
. (12)

Here ω0, ωs are the incident photon frequency and

the scattered photon frequency in the lab frame.

We mark that K0 = 1− β cosθ0. From Eq. (4),

Eq. (11) and Eq. (12) we get

ωs

ω0

=
K0

1−β cosθ
≈

2K0γ
2

1+θ2γ2
. (13)

We differentiate both sides of Eq. (13) and get

dωs

sinθdθ
=

K0ω0β

(1−β cosθ)2
≈

4K0γ
2ω0

(1+θ2γ2)2
. (14)

From Eq. (10) and Eq. (14) we get

dσ

dωsdφ
=

r2
0

K0γ2ω0

[

1−
2θ2γ2

(1+θ2γ2)

]

. (15)

According to Eq. (13) we get

θ2 =
2K0ω0

ωs

−
1

γ2
. (16)

We can put Eq. (13) into Eq. (15) to obtain the

cross section per unit frequency per unit azimuthal φ,

and have

dσ

dωsdφ
=

r2
0

2K3
0γ6ω3

0

(ω2
s−2K0γ

2ω0ωs+2K2
0γ

4ω2
0). (17)

Integrating over azimuthal angle φ, we can get
dσ

dωs

. Denoting the acceptance angle of the detector

as θm, we can see that not all the scattered photons

with direction angle θ are received by the detector.

So here the scope of integration is not just 0 ∼ 2π,

but 0∼ 2π−2Φ, as shown in Fig. 1.

Fig. 1. Angular geometry of Thomson scatter-

ing. Circle O represents the acceptance range

of the detector, and dot A represents an elec-

tron with an incident angle θe. Arc l represents

the scattered photons with direction angle θ

that are received by the detector, and arc l
′

represents those out of the acceptance range.
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Finally we get

dσ

dωs

=
∆φr2

0

2K3
0γ6ω3

0

(ω2
s −2K0γ

2ω0ωs +2K2
0γ

4ω2
0). (18)

While θe 6 θm,

∆φ =














2π, 0 6 θ 6 θm−θe

2π−2arccos
θ2

m−θ2−θ2
e

2θθe

, θm−θe < θ 6 θm +θe

,

(19)

and while θe > θm,

∆φ =














0, 0 6 θ 6 θe−θm

2π−2arccos
θ2

m−θ2−θ2
e

2θθe

, θe−θm < θ 6 θe +θm

,

(20)

and here θ =

√

2K0ω0

ωs

−
1

γ2
.

When the incident angle is θe = 180◦, Eq. (18)

becomes

dσ

dωs

=
πr2

0

8γ6ω3
0

(ω2
s −4γ2ω0ωs +8γ4ω2

0). (21)

In this situation we get the same result as in

Tomassini’s paper [1].

We can compare the simulation result with

Eq. (18), using the CAIN code [4], and good agree-

ment is obtained as in Fig. 2.

Fig. 2. Spectral distributions of the scattered

photons obtained with acceptance angle θm =

4.2 mrad. Here the electron energy is 40 MeV,

the laser wave length is 800 nm, the laser en-

ergy is 1 J, the laser radius is 20 µm, the laser

length is 1ps, and the incident angle of the

electron and the laser beam θe = 3 mrad.

3 Spectral distributions of the scat-

tered photons for an electron beam

within a certain acceptance angle

In the previous section we obtain the equation for

the spectral distributions of the scattered photons for

a single electron, as shown in Eq. (18). Based on this

equation, we consider the influence of the beam diver-

gence, energy spread and spatial distribution. Here

we consider the head-on collision (the colliding angle

between the electron beam and laser is 180◦). Then

for each electron we have that θ0 → 180◦, and so in

Eq. (18), K0 → 2, and it becomes

dσ

dωs

=
∆φr2

0

16γ6ω3
0

(ω2
s −4γ2ω0ωs +8γ4ω2

0), (22)

where ∆φ is shown as in Eq. (18).

3.1 Spatial and time distribution of laser and

beam

According to the Thomson Scattering equation

[2], we have

Ns =
σ

ce
c

∫
JµΦµd4x

= cσ

∫(
1− ~β ·~k

c

ω

)

ne(r, t)nγ(r, t)d3rdt, (23)

where σ is the average Thomson cross section of all

the electrons.

Here ~β · ~k
c

ω
→ −1, as we consider the head-on

collision, and we get

dNs

dωs

= c
dσ

dωs

·2
∫
ne(r, t)nγ(r, t)2πrdrdzdt. (24)

The electron beam density can be modeled by the

Gaussian radial and temporal distributions

ne =
Ne

π3/2c∆τr2
b

exp






−





t−
z

c
∆τ





2

−
r2

r2
b






, (25)

where Ne = q/e is the number of electrons in the

bunch, ∆τ is the bunch duration, and rb is the radius

at focus.

The photon density of laser pulse can be described

by the Gaussian radial and temporal distributions [5]

nγ =
Nγ

(π/2)3/2c∆tw2
0

1

1+

(

z

z0

)2

×exp























−2





t+
z

c
∆t





2

−
r2

w2
0

[

1+

(

z

z0

)2
]























, (26)



206 Chinese Physics C (HEP & NP) Vol. 35

where Nγ =
W

~ω0

is the total number of photons in the

laser pulse, ∆t is the pulse duration, and is related

to the bandwidth as ∆t∆ω =
√

2, w0 is the
1

e2
focal

radius, and z0 =
πw2

0

λ0

is the Rayleigh length.

In the linear regime for high brightness X-ray op-

eration, the laser pulse duration should be short com-

pared with the Rayleigh length. So during the in-

teraction of Thomson scattering, the focusing and

diffracting of the pulse could be ignored and the pho-

ton density could be approximated as follows:

nγ ≈
Nγ

(π/2)3/2c∆tw2
0

exp






−2





t+
z

c
∆t





2

−
r2

w2
0






. (27)

Putting Eq. (25) and Eq. (27) into Eq. (24) we

have

dNs

dωs

=
dσ

dωs

NγNe

π

(

r2
b +

w2
0

2

) . (28)

In the section below, we will obtain the equation

of dσ/dωs through the known dσ/dωs as shown in

Eq. (18).

3.2 Beam divergence

Here we assume that the electron beam diver-

gences in x and y directions are the same, and then

the beam divergences distribution could be described

as

f(θe) =
2θe

∆θ2
e

exp

(

−
θ2
e

∆θ2
e

)

. (29)

Then we have

dσe

dωs

=

∫
dσ

dωs

f(θe)dθe. (30)

From Eq. (17), Eq. (28) and Eq. (29) we get

dσe

dωs

=
∆φer

2
0

16γ6ω3
0

(ω2
s −4γ2ω0ωs +8γ4ω2

0), (31)

where

∆φe =







































θm+θ∫

θm−θ

2

(

π−arccos
θ2

m−θ2−θ2
e

2θθe

)

f(θe)dθe+

θm−θ∫

0

2πf(θe)dθe, θ 6 θm

θ+θm∫

θ−θm

2

(

π−arccos
θ2

m−θ2−θ2
e

2θθe

)

f(θe)dθe, θ > θm

, (32)

where

θ =

√

4ω0

ωs

−
1

γ2
.

To calculate the above integral equation, here we carry out the Taylor expansion to the inverse trigonometric

functions and take the first-order term for approximation. Later we will see that this approximation is suitable

for the final analysed result.

Then we get

arccos
θ2

m−θ2−θ2
e

2θθe

≈
π

2
−

θ2
m−θ2−θ2

e

2θθe

. (33)

From Eq. (32) and Eq. (33) we get

∆φe =

∫
∆φ1f(θe)dθe =

{

A, θ 6 θm

C, θ > θm

, (34)

where

A = 2π

{

1−exp

[

−
(θm−θ)2

∆θ2
e

]}

+

(

π−
θm−θ

θ

)

exp

[

−
(θm−θ)2

∆θ2
e

]

−
(

π−
θm +θ

θ

)

exp

[

−
(θm +θ)2

∆θ2
e

]

+
√

π

θ2
m−θ2−

∆θ2
e

2
θ∆θe

[

erf

(

θm +θ

∆θe

)

−erf

(

θm−θ

∆θe

)]

, (35)
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C =

(

π−
θ−θm

θ

)

exp

[

−
(θ−θm)2

∆θ2
e

]

−
(

π−
θ+θm

θ

)

exp

[

−
(θ+θm)2

∆θ2
e

]

+
√

π

θ2
m−θ2−

∆θ2
e

2
θ∆θe

[

erf

(

θ+θm

∆θe

)

−erf

(

θ−θm

∆θe

)]

. (36)

3.3 Beam energy spread

The electron beam energy distribution function could be described as

f(γ) =
1

√
2πσγ

exp

[

−
(γ−γ0)

2

2σ2
γ

]

. (37)

Then we have

dσ

dωs

=

∫
dσe

dωs

f(γ)dγ. (38)

As the beam energy spread is very small (σγ/γ0 � 1), so γ ≈ γ0. And from Eq. (28) and Eq. (36) we have

dσ

dωs

=
r2
0

16γ6
0ω

3
0

(ω2
s −4γ2

0ω0ωs +8γ4
0ω

2
0)

∫
∆φef(γ)dγ, (39)

where ∫
∆φef(γ)dγ =

∫

θ6θm

Af(γ)dγ +

∫

θ>θm

Cf(γ)dγ. (40)

As mentioned in the previous section, we know that

θ =

√

4ω0

ωs

−
1

γ2
≈

√

4ω0

ωs

−
1

γ2
0

+
2∆γ

γ3
0

, (41)

where ∆γ = γ−γ0 , and from Eq. (38) and Eq. (39) we get

∫

∆φef(γ)dγ =

γ
3
0

2

(

1

γ
2
0

−
4ω0

ωs
+θ2

m

)

∫

γ
3
0

2

(

1

γ
2
0

−
4ω0

ωs

)

A ·exp

(

−
∆γ2

2σ2
γ

)

2
√

2πσγ

dγ +

∞∫

γ
3
0

2

(

1

γ
2
0

−
4ω0

ωs
+θ2

m

)

C ·exp

(

−
∆γ2

2σ2
γ

)

2
√

2πσγ

dγ. (42)

As the beam energy spread is very small

(

σγ

γ0

� 1

)

, we can see that A(γ)≈ A(γ0), C(γ)≈ C(γ0) , so we

get

∆Φ = A(γ0) ·
1

2

{

erf

[

γ3
0

2
√

2σγ

(

1

γ2
0

−
4ω0

ωs

+θ2
m

)]

−erf

[

γ3
0

2
√

2σγ

(

1

γ2
0

−
4ω0

ωs

)]}

+C(γ0) ·
1

2

{

1−erf

[

γ3
0

2
√

2σγ

(

1

γ2
0

−
4ω0

ωs

+θ2
m

)]}

, (43)

where A and C are described in Eq. (35) and Eq. (36).

Finally the spectral distributions of the scattered

photons for electron beam within a certain acceptance

angle could be described as

dNs

dωs

= ∆Φ
NγNe

π

(

r2
b +

w2
0

2

)

r2
0

16γ6
0ω

3
0

(ω2
s

−4γ2
0ω0ωs +8γ4

0ω
2
0). (44)

4 Comparison with simulation results

Here we use the typical parameters of the Thom-

son scattering system in many universities and re-

search institutions.

We use the CAIN code and get the simulation re-

sult, as shown in Fig. 3. We can see that the analysed

results show good agreement with the simulation re-

sults.
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Fig. 3. Spectral distributions of the scattered

photons for a Thomson scattering system ob-

tained with different acceptance angles.

The left of each curve shows less coincidence,

which is because of the approximation in Eq. (33). As

for the left of each curve, we have that θ ≈ θe � θm,

and so
θ2

m−θ2−θ2
e

2θθe

→ −1, which is just when the

maximum error of the approximation is produced.

Table 1. The electron beam and laser beam parameters.

electron beam laser beam

energy 55 MeV wave length 800 nm

radius 20 µm energy 1 J

emittance 1.5 mm·mrad length 3 ps

charge 1 nC radius 20 µm

length 0.5 ps quality M
2 = 1

energy spread 0.2%

5 Conclusion

In this paper, we have derived spectral distribu-

tions of the Thomson scattered photons within a cer-

tain acceptance angle considering the beam diver-

gence, energy spread and spatial distribution. When

compared with the simulation results, good agree-

ment is obtained. Our results could be used for rapid

estimation of the spectral distributions, wide range

scanning of the spectral distributions with the proper

parameters in Thomson scattering, and are also im-

portant in the optimal design of a tunable Thomson-

scattering based X-ray source.
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