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Abstract The prevailing theoretical quark and gluon momentum, orbital angular momentum and spin op-

erators, satisfy either gauge invariance or the corresponding canonical commutation relation, but one never

has these operators which satisfy both except the quark spin. The conflicts between gauge invariance and the

canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum,

orbital angular momentum and spin operators, which satisfy both gauge invariance and canonical momentum

and angular momentum commutation relation, are proposed. To achieve such a proper decomposition the key

point is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also

exist in QED and quantum mechanics, and have been solved in the same manner. The impacts of this new

decomposition to the nucleon internal structure are discussed.
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1 Introduction

In quantum physics, any observable is expressed

as a Hermitian operator in Hilbert space. The funda-

mental operators, such as momentum, orbital angular

momentum, and spin, satisfy the canonical momen-

tum and angular momentum commutation relation.

These commutation relations or Lie algebras define

the properties of these operators.

Gauge invariance has been recognized as the first

principle through the development of the standard

model. In classical gauge field theory, gauge invari-

ance principle requires that any observable must be

expressed in terms of gauge invariant variable. In

quantum gauge field theory, in general one only re-

quires the matrix elements of an operator in between

physical states to be gauge invariant. However, one

usually requires the operators themselves to be gauge

invariant. This is called strong gauge invariance in

Ref. [1]. We will restrict our discussion in strong

gauge invariance in this paper and leave the other

possibility to the future study [1, 2].

In the study of nucleon (atom) internal structure,

it is unavoidable to study the quark, gluon (electron,

photon) momentum, orbital angular momentum and

spin contributions to the nucleon (atom) momentum

and spin. However, the prevailing theoretical quark

and gluon (electron, photon) momentum, orbital an-

gular momentum and spin operators, satisfy either

gauge invariance or the canonical momentum and

angular momentum commutation relation, but one

never has these operators which satisfy both except

the quark (electron) spin. Even it has been claimed

in some textbooks that one can not define separately
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the photon spin and orbital angular momentum op-

erators [3]. A proper gluon spin operator search has

almost been given up in the study of nucleon spin

structure for the last ten years. This situation has

left puzzles in quantum mechanics, quantum elec-

trodynamics (QED) and quantum chromodynamics

(QCD). For example, the expectation value of the

Hamiltonian of hydrogen atom is gauge dependent

under a time dependent gauge transformation [4].

The meaning of the multipole radiation analysis from

atom to hadron spectroscopy would be obscure if the

photon spin and orbital angular momentum opera-

tors were not well defined. Especially, the parity of

these microscopic states determined from the multi-

pole radiation analysis would be obscure. There will

be no way to compare the measured gluon spin con-

tribution to nucleon spin with the theoretically cal-

culated one, if one does not have a proper gluon spin

operator. The quark “orbital angular momentum”

obtained from the quark “total angular momentum”

derived from the deeply virtual Compton scattering

and the generalized parton distribution is physically

different from the standard one. This analysis used

a quark “orbital angular momentum” operator which

includes the gluon contribution and does not satisfy

the angular momentum algebra.

In section / the conflict between gauge invariance

and canonical quantization of the prevailing quark,

gluon (electron, photon) momentum, orbital angular

momentum and spin operators are discussed. This

discussion starts from the simple quantum mechanics

of a charged particle moving in an electromagnetic

field to those of quark and gluon in QCD. In the third

section a new set of quark and gluon momentum, or-

bital angular momentum and spin operators, which

satisfy both gauge invariance and canonical momen-

tum and angular momentum commutation relation,

are given. The key point is to separate the gauge

field into pure gauge and gauge covariant (invariant)

parts. The potential impacts of these modifications to

the nucleon internal structure will be discussed in sec-

tion 1. The last section is a summary and a prospect

of further studies.

2 Conflict between gauge invariance

and canonical quantization in the

atom and nucleon internal structure

The conflict between gauge invariance and canon-

ical quantization of the momentum and orbital angu-

lar momentum operators of a charged particle mov-

ing in the electromagnetic field, a U(1) Abelian gauge

field, has existed in quantum mechanics since the es-

tablishment of gauge invariance principle. Starting

from the Lagrangian of a non-relativistic charged par-

ticle with mass m, velocity ~v and charge e moving in

an electromagnetic field Aµ = (A0, ~A),

L(m,~v,e,Aµ) =
1

2m
(m~v)2−e(A0−~v · ~A), (1)

one obtains the canonical momentum,

~p = m~v+e ~A, (2)

the orbital angular momentum,

~L = ~r×~p, (3)

and the Hamiltonian,

H =
1

2m
(~p−e ~A)2 +eA0. (4)

All of these three classical dynamical variables are

gauge dependent. In the coordinate representation,

the momentum operator ~p is quantized as

~p =
~∇

i
, (5)

no matter what kind gauge is chosen, even though the

classical canonical momentum, Eq. (2), is gauge de-

pendent. The orbital angular momentum and Hamil-

tonian operators are quantized by replacing ~p by
~∇

i
.

These quantized momentum and angular momentum

operators satisfy the canonical commutation relation

or the Lie algebra:

[pl,pm] = 0,

[Ll,Lm] = iεlmnLn,

[pl,Lm] = iεlmnpn,

l,m,n = 1,2,3, (6)

where εl,m,n is the rank three totally antisymmetric

tensor and ε1,2,3 = 1. In general, the [pl,H ] 6= 0, which

is different from the Poincaré algebra of the total mo-

mentum Pl,(l= 1,2,3) and total H of the whole sys-

tem where [Pl,H ] = 0.

However, after a gauge transformation,

ψ′ = e−ieω(x)ψ, (7)

the matrix elements of the above operators transform

as follows,

〈ψ′|~p|ψ′〉 = 〈ψ|~p|ψ〉−e〈ψ|~∇ω(x)|ψ〉,

〈ψ′|~L|ψ′〉 = 〈ψ|~L|ψ〉−e〈ψ|~r× ~∇ω(x)|ψ〉,

〈ψ′|H ′|ψ′〉 = 〈ψ|H |ψ〉+e〈ψ|∂tω(x)|ψ〉. (8)

It is obvious that the matrix elements of these three

operators are all gauge dependent. Therefore they
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are not measurable and so these operators do not

correspond to observables. This problem has left in

quantum mechanics since the gauge principle was pro-

posed.

The relativistic version of quantum mechanics has

the same problem. The gauge dependence of the ex-

pectation value of the Hamiltonian of the charged

particle moving in electromagnetic field under a time

dependent gauge transformation had been discussed

by T. Goldman [4].

This conflict had been carried over to QED. Start-

ing from a QED Lagrangian,

L = ψ̄[iγµ(∂µ +ieAµ)−m]ψ−
1

4
FµνF

µν ,

Fµν = ∂µAν −∂νAµ. (9)

By means of the Noether theorem one obtains the

canonical momentum and angular momentum opera-

tors as follows:

~P = ~Pe + ~Pph =

∫
d3xψ†

~∇

i
ψ+

∫
d3xEi~∇Ai, (10)

~J = ~Se + ~Le + ~Sph+ ~Lph =
∫
d3xψ†

~Σ

2
ψ+

∫
d3x~x×ψ†

~∇

i
ψ+

∫
d3x~E× ~A+

∫
d3x~x×Ei~∇Ai. (11)

Here Σj =
i

2
εjklγ

kγl. These electron and photon mo-

mentums, orbital angular momentums and spin, after

quantization, satisfy momentum and angular momen-

tum Lie algebra. However, they are not gauge invari-

ant except the electron spin.

The multipole radiation analysis is the basis of

atomic, molecular, nuclear and hadron spectroscopy.

The multipole field is obtained through the decom-

position of the electromagnetic field into field with

definite orbital angular momentum and spin quan-

tum numbers. If the photon spin and orbital angu-

lar momentum operators were gauge dependent, then

the physical meaning of the multipole field would be

obscure. Especially, the parity of these microscopic

states determined by the measurement of the orbital

angular momentum quantum number of the multipole

radiation field would be obscure.

QCD has the same problem as QED. The quark

gluon momentum, orbital angular momentum and

spin operators derived from QCD Lagrangian by

Noether theorem have the same form as those of elec-

tron and photon if one omits the color indices. They

satisfy the momentum and angular momentum Lie

algebra, but they are not gauge invariant except the

quark spin.

Because of the lack of gauge invariant quark,

gluon momentum operators, the present operator

product expansion (OPE) used the following two op-

erators as quark gluon momentum operators,

~P = ~Pq + ~Pg =

∫
d3xψ†

~D

i
ψ+

∫
d3x~E× ~B,

~D = ~∇− ig ~A. (12)

Both the quark and gluon “momentum” operators ~Pq

and ~Pg defined in Eq. (12) are gauge invariant but nei-

ther the quark “momentum” ~Pq nor the gluon “mo-

mentum” ~Pg satisfies the momentum algebra. For

example,

[Dl,Dm] =−ig(∂lAm−∂mAl)−ig2CabcA
a
lA

b
mT

c, (13)

where Cabc is the SU(3) group structure constant.

The ~Pg does not satisfy the momentum algebra ei-

ther in the interacting quark-gluon field, i.e. QCD

case. Therefore neither the ~Pq nor the ~Pg used in

the OPE is the proper momentum operator. More-

over, the three components of ~Pq can not be measured

simultaneously and therefore can not be used to de-

scribe the three dimensional parton distribution.

The gluon spin contribution is under intensive

study. PHENIX, STAR, COMPASS, HERMES, and

others are measuring the gluon spin contribution to

nucleon spin. However, there is no gluon spin opera-

tor which satisfies both gauge invariance and angular

momentum algebra. There is also no quark, gluon

orbital angular momentum operator which satisfies

these two requirements. These situations hindered

the study of the nucleon spin structure.

3 A new set of momentum, orbital an-

gular momentum and spin operators

for quark (electron) and gluon (pho-

ton)

3.1 Decomposing the gauge field Aµ into

pure gauge part Apure and gauge invari-

ant (covariant) part Aphys

Let us start from the simpler QED case. It is well

known that to use gauge potential Aµ to describe the

electromagnetic field the Aµ is not unique, i.e., there

is gauge freedom. Under a gauge transformation,

A′µ =Aµ +∂µ
ω(x), (14)

one obtains a new gauge potential A′µ from Aµ. Aµ

and A′µ describe the same electromagnetic field,

Fµν = ∂µAν −∂νAµ = ∂µA
′
ν −∂νA

′
µ. (15)
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Such a gauge freedom is necessary because the gauge

potential Aµ plays two role in gauge field theory: the

first is to provide a pure gauge field Apure to com-

pensate the induced field due to the phase change

in a local gauge transformation of the Fermion field

ψ′(x) = e−ieω(x)ψ(x); the second is to provide a

physical field Aphys for the physical interaction be-

tween Fermion field and gauge field, which should

be gauge invariant under gauge transformation. The

pure gauge potential Apure should not contribute to

electromagnetic field,

F µν
pure = ∂µ

Aν
pure−∂ν

Aµ
pure = 0. (16)

This equation can not fix the Apure. One has to find

additional condition to fix it. The spatial part of

Eq. (16) is

∇× ~Apure = 0, (17)

which means ~Apure does not contribute to magnetic

field. This equation can be expressed in another form,

∇× ~Aphys =∇× ~A. (18)

An unique choice of the additional condition in QED

case is

∇· ~Aphys = 0, (19)

which is the transverse wave condition and we know

that this part is the physical one from the Coulomb

gauge quantization. Combining these two conditions,

Eqs. (18) and (19), under the natural boundary con-

dition,
~Aphys(|x|→∞) = 0, (20)

for any given set of gauge field ~A, one can decompose

it uniquely as follows,

~A= ~Apure + ~Aphys. (21)

Where

~Aphys(x) = ~∇×
1

4π

∫
d3x′

~∇′× ~A(x′)

|~x− ~x′|
,

~Apure(x) = ~A− ~Aphys(x). (22)

We like to emphasize that ~Aphys(x) is a local func-

tion of space-time coordinate x, but it is a non-local

function (precisely functional) of the gauge potential

Aµ(x) and the ~∇′× ~A(x′) is the observable magnetic

field ~B(x′). This is just what one needs in describing

the Bohm-Aharonov effect. It is a local interaction

expressed in terms of ~A(x), but is a non-local inter-

action expressed in terms of magnetic field ~B(x). It

is easy to prove that these two parts transform as

follows in a gauge transformation Eq. (14),

~A′
phy = ~Aphy,

~A′
pure = ~Apure− ~∇ω(x). (23)

The time component A0 can be decomposed in the

same manner. From the condition F i0
pure = 0, one ob-

tains

∂iA
0
phys = ∂iA

0 +∂t(A
i−Ai

phys),

A0
phys =

∫ x

−∞

dx′i(∂iA
0 +∂tA

i−∂tA
i
phys). (24)

The A0
phys(x) can also be expressed directly in terms

of the electric and magnetic fields as

A0
phys =

∫x

−∞

dx′i

(

∂t

(

~∇′×
1

~∇′2

~B

)i

−Ei

)

. (25)

Please note there is no summation over the index i

in Eqs. (24) and (25). Any component i can be used

to obtain the A0
phys. Eqs. (22) and (25) show that

the physical part of the gauge potential Aµ
phys defined

here is observable. The Aµ
pure = Aµ −A

µ
phys can also

be obtained from Eqs. (17), (19) and (24) directly,

~Apure = ~∇φ(x),

φ(x) = −
1

4π

∫
d3x′∇

′ · ~A(x′)

|~x− ~x′|
+φ0(x),

A0
pure = −∂tφ(x), (26)

where φ0(x) satisfies the condition,

∇2φ0(x) = 0, (27)

and is determined by the boundary condition.

The decomposition of the gauge potential Aµ =

Aa
µT

a for the gluon field is more complicated than

QED case. We first define the pure gauge potential

Aµ
pure (hereafter we omit the color indices if not nec-

essary) by the same condition, i.e., it does not con-

tribute to color electromagnetic field,

F µν
pure = ∂µ

Aν
pure−∂ν

Aµ
pure +ig[Aµ

pure,A
ν
pure] = 0. (28)

In order to make this defining condition look similar

to Eq. (17), we introduce a notation,

~Dpure = ~∇− ig ~Apure,

~Dpure× ~Apure = ~∇× ~Apure− ig ~Apure× ~Apure = 0. (29)

The additional condition is even more complicated,

i.e., one does not have a natural choice as Eq. (19) in

QED. We make the following choice [5],

~Dpure = ~∇− ig[ ~Apure, ]

~Dpure · ~Aphys = ~∇· ~Aphys− ig[Ai
pure,A

i
phys] = 0. (30)

The summation over the vector component i has been

assumed in the above equation and the following ones.

Please note that in the above adjoint representation of

the new covariant derivative operator ~D, the bracket
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[Ai
pure,A

i
phys] is not the quantum bracket but a color

SU c(3) group one,

[Ai
pure,A

i
phys] = iCabcA

ib
pureA

ic
physT

a.

These equations can be rewritten as follows,

~∇· ~Aphys = ig[Ai−Ai
phys,A

i
phys] = ig[Ai,Ai

phys],

~∇× ~Aphys = ~∇× ~A− ig( ~A− ~Aphys)×( ~A− ~Aphys),

∂iA
0
phys = ∂iA

0 +∂t(A
i−Ai

phys)−

ig[Ai−Ai
phys,A

0−A0
phys]. (31)

These equations can be solved perturbatively: in the

zeroth order, i.e., assuming g= 0, these equations are

the same as those of QED, and one can obtain the

zeroth order solution; then taking into account the

nonlinear coupling through iteration, one obtains a

perturbative solution as a power expansion in g.

If one assumes a trivial boundary condition for the

pure gauge field Apure, then one can use the following

equations to obtain a perturbative solution too,

~∇× ~Apure = ig ~Apure× ~Apure,

~∇· ~Apure = ~∇· ~A− ig[Ai
pure,A

i], (32)

∂iA
0
pure = −∂tA

i
pure +ig[Ai

pure,A
0
pure].

Under a gauge transformation,

ψ′ = Uψ,

A′
µ = UAµU

†−
i

g
U ∂µU

†, (33)

where U = e−igω. The ~Apure and ~Aphys will be trans-

formed as

~A′
phys = U ~AphysU

†,

~A′
pure = U ~ApureU

†−
i

g
U ∂µU

†. (34)

3.2 Quantum mechanics

We have mentioned in the introduction part that

even in quantum mechanics, there are already puz-

zles related to the fundamental operators, the ma-

trix elements of canonical momentum, orbital angu-

lar momentum and Hamiltonian of a charged particle

moving in an electromagnetic field are all not gauge

invariant. In order to get rid of these puzzles, gauge

invariant operators have been introduced,

~P = ~p−e ~A,

~L = ~x× ~P . (35)

It is easy to check that the matrix elements of these

operators are gauge invariant. However, as we have

pointed out in Eq. (13), the gauge invariant “momen-

tum” ~P does not satisfy the canonical momentum Lie

algebra. So they are not the proper momentum. The

gauge invariant “orbital angular momentum” ~L does

not satisfy the angular momentum Lie algebra either.

Based on our proposed gauge field decomposition

in the above section, we introduce another set of mo-

mentum and orbital angular momentum operators

which satisfy both gauge invariance and the corre-

sponding commutation relation,

~ppure = ~p−e ~Apure,

~Lpure = ~x×~ppure. (36)

The long standing puzzle, the gauge non-

invariance of the expectation value of the Hamilto-

nian [4] can be solved in the same manner. For the

non-relativistic quantum mechanics, the new Hamil-

tonian is

H =
(~p−e ~A)2

2m
+eA0 +e∂tφ(x). (37)

The last term is a pure gauge term. It cancels the

unphysical energy appearing in eA0 induced by the

pure gauge term and then guarantees the expecta-

tion value of this Hamiltonian gauge invariant. It is a

direct extension of Eq. (36) to the fourth momentum

component.

The Dirac Hamiltonian has the same unphysical

energy part and has to be canceled in the same man-

ner as that for the Schrödinger Hamiltonian. Here we

have done a check: starting from a QED Lagrangian

with both electron and proton, under the infinite pro-

ton mass approximation, we derived the Dirac equa-

tion of electron and the gauge invariant Hamiltonian

of the electron part. We verified the difference be-

tween the Dirac Hamiltonian obtained from the Dirac

equation and the gauge invariant one.

Our study shows that the canonical momentum,

orbital angular momentum and the Hamiltonian used

in quantum mechanics are not observables. One must

subtract the pure gauge part, the unphysical one,

from these operators as we did in Eqs. (36) and (37)

to obtain the observable ones.

3.3 QED

We have explained that the canonical momentum

and angular momentum operators of the Fermion

and gauge field part, Eqs. (10) and (11), derived

from the QED Lagrangian by means of Noether theo-

rem are not gauge invariant except the Fermion spin.

One can obtain a gauge invariant decomposition by

adding a surface term or from the Belinfante symmet-
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ric energy-momentum tensor,

~P = ~Pe + ~Pph =

∫
d3xψ†

~D

i
ψ+

∫
d3x~E× ~B, (38)

~J = ~Se + ~Le + ~Jph =
∫
d3xψ†

~Σ

2
ψ+

∫
d3x~x×ψ†

~D

i
ψ+

∫
d3x~x×( ~E× ~B). (39)

There are two problems with this decomposition: (1),
~Pe and ~Pph ( ~Le and ~Jph) do not satisfy the mo-

mentum (angular momentum) commutation relation,

even though in the case of free electromagnetic field

the photon total momentum ~Pph and angular momen-

tum ~Jph do; (2), there is no separate photon spin and

orbital angular momentum operators and this feature

will ruin the multipole radiation analysis as we dis-

cussed in the second section.

Based on the decomposition of the gauge poten-

tial into pure gauge and the physical parts, Eq. (21),

we obtain the following decomposition,

~P = ~Pe + ~Pph =
∫
d3xψ†

~Dpure

i
ψ+

∫
d3xEi ~DpureA

i
phys. (40)

~J = ~Se + ~Le + ~Sph+ ~Lph =
∫
d3xψ†

~Σ

2
ψ+

∫
d3x~x×ψ†

~Dpure

i
ψ+

∫
d3x~E× ~Aphys +

∫
d3x~x×Ei ~DpureA

i
phys. (41)

Here the operators ~Dpure and ~Dpure are the same as

the ones given in Eqs. (29) and (30), but with g re-

placed by e. Because of the Abelian property of the

U(1) gauge field, the adjoint representation of the

operator ~D is simplified to be a simple ~∇. It is not

hard to check that each operator in the above decom-

position, Eqs. (40) and (41), is gauge invariant and

satisfies the momentum, angular momentum commu-

tation relation.

The photon spin and orbital angular momentum

operators are well defined as shown in Eq. (41). The

multipole radiation analysis is theoretically sound

now as it should be.

3.4 QCD

One can copy results for QED, the Eqs. (40), (41),

to QCD to obtain the quark, gluon momentum, or-

bital angular momentum and spin operators which

satisfy both the gauge invariance requirement and the

canonical momentum and angular momentum com-

mutation relations.

A decomposition of the form of Eqs. (38), (39)

has been used in the nucleon momentum and spin

structure study for the last years [6]. Each opera-

tor in those decompositions is gauge invariant and

so corresponds to an observable. However, because

they do not satisfy the momentum, angular momen-

tum Lie algebra, the measured ones are not the quark,

gluon momentum and orbital angular momentum and

can not be compared to those used in hadron spec-

troscopy.

The gluon spin operator had been searched for

more than ten years in the nucleon spin structure

study and no satisfactory one was obtained. Now

one can calculate the matrix element of the gluon

spin operator ~Sg =

∫
d3x~E× ~Aphys between the polar-

ized nucleon state |N(p,s)〉 to obtain the gluon spin

contribution to nucleon spin and compare it with the

measured ones.

4 Reexamination of the nucleon inter-

nal structure

The nucleon internal structure has been studied

based on the gauge invariant but canonical momen-

tum, angular momentum Lie algebra violating oper-

ators given in Eqs. (38), (39) for the past years. This

led to a distorted picture of the nucleon internal struc-

ture. For example, that the quark and gluon carry

half of the nucleon momentum in the asymptotic limit

has been a deeply rooted picture of nucleon internal

momentum structure. Using the new quark, gluon

momentum operators, we recalculated their scale evo-

lution and obtained the new mixing matrix,

γP = −
αs

4π









−
2

9
ng

4

3
nf

2

9
ng −

4

3
nf









. (42)

Which gives the new asymptotic limit for the renor-

malized gluon momentum,

~PR
g =

1

2
ng

1

2
ng +3nf

~Ptotal. (43)

For typical gluon number ng = 8 and quark flavor

number nf = 5, the above equation gives ~pR
g '

1

5
~Ptotal.

This is distinctly different from the renowned results

~PR
g '

1

2
~Ptotal. This latter result is obtained from the
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mixing matrix,

γP = −
αs

4π









−
8

9
ng

4

3
nf

8

9
ng −

4

3
nf









, (44)

which is obtained by means of the quark and gluon

momentum operators given in Eq. (38). The mixing

matrix element of Eq. (44) leads to the well known

asymptotic limit,

~PR
g =

2ng

2ng +3nf

~Ptotal. (45)

However, the ~Pg and ~Pq used in this quark gluon mo-

mentum scale evolution calculation are not the real

momentum operators. Part of the quark momentum

had been shifted to the gluon and gave the superfi-

cially large gluon momentum contribution to nucleon

momentum.

The asymptotic nucleon spin structure [7] is ob-

tained based on the decomposition Eq. (11), a QED

analog of QCD angular momentum decomposition.

The authors had pointed out that the quark and

gluon orbital angular momentum operators are not

gauge invariant. As we have mentioned in the begin-

ning, in the present gauge field theory an observable

must be expressed in terms of a gauge invariant op-

erator. The gauge dependent operators used in this

analysis [7] are not the measurable ones. Therefore

this asymptotic limit of nucleon spin content should

be reexamined.

Another nucleon internal structure parameters are

the parton distribution function (PDF). For example,

the quark PDF in a target A is defined as,

Pq/A(ξ) =
1

2

∫∞

−∞

dx−

2π

e−iξP+x−

〈ψ̄(0,x−,0⊥)γ+

P exp{ig

∫x−

0

dy−A+(0,y−,0⊥)}ψ(0)〉A, (46)

where a gauge link (Wilson line) is inserted to achieve

gauge invariance. Based on our gauge field decompo-

sition discussed in the third section, the above gauge

link not only includes the necessary pure gauge Apure

part to achieve the gauge invariance, but also in-

cludes the physical part Aphys which induces a phys-

ical coupling and makes the PDF defined in Eq. (46)

an interaction-involving one. The interaction term is

more clear in the momentum relation,∫∞

−∞

dξξPq/A(ξ) =
1

2(P+)2
〈ψ̄γ+iD+ψ〉A. (47)

This is just the + componetnt of ~Pq(x) in Eq. (12).

Here the gauge field in D+ originates exactly from the

gauge link in Eq. (46).

To obtain a gauge invariant quark PDF, a gauge

link with the pure gauge part is enough,

Pq/A(ξ) =
1

2

∫∞

−∞

dx−

2π

e−iξP+x−

〈P |ψ̄(0,x−,0⊥)γ+

P exp{ig

∫x−

0

dy−A+
pure(0,y

−,0⊥)}ψ(0)|P 〉A, (48)

this PDF will not include the redundant physical

gauge interaction and the integration gives the real

quark momentum defined in Eq. (40).∫∞

−∞

dξξPq/A(ξ) =
1

2(P+)2
〈ψ̄γ+iD+

pureψ〉A. (49)

Analogously, the conventional gluon PDF

Pg/A(ξ) =
1

ξP+

∫∞

−∞

dx−

2π

e−iξP+x−

〈F+ν(0,x−,0⊥)

P exp{ig

∫x−

0

dy−A+(0,y−,0⊥)}F +
ν (0)〉A, (50)

can be replaced according to our strategy as

Pg/A(ξ) =

∫∞

−∞

dx−

2π

e−iξP+x−

〈F+i(0,x−,0⊥)

P exp{ig

∫x−

0

dy−A+
pure(0,y

−,0⊥)}Ai
phys(0)〉A. (51)

Where besides the pure gauge link, the physical com-

ponent ~Aphys is used instead of F+
ν

as the gauge in-

variant variable. The second moments of Pg/A and

Pg/A relate to the Poynting and the real gluon mo-

mentum in Eqs. (12) and (40) (the QCD quark and

gluon momentums have exactly the same expression

as those of QED with only the subscript e and ph

being replaced by q and g).

Our approach is also convenient in construct-

ing the gauge invariant polarized and transverse-

momentum dependent PDFs with clear particle num-

ber interpretation, and off-forward PDFs which can

be measured to infer the real orbital angular momen-

tums in Eq. (41). For example the polarized gluon

PDF can be defined gauge invariantly as

P∆g/A(ξ) =

∫∞

−∞

dx−

2π

e−iξP+x−

〈F+i(0,x−,0⊥)

P exp{ig

∫x−

0

dy−A+
pure(0,y

−,0⊥)}εij+A
j
phys(0)〉A, (52)

with a first moment relating to the gauge invariant

gluon spin in Eq. (41).

5 Summary and prospect

Since the establishment of gauge invariance prin-

ciple, we enjoy that the total momentum, angular
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momentum and the Lorentz boosting operators of a

gauge system satisfy both the gauge invariance and

Poincaré algebra. However, we never have the sep-

arate momentum, orbital angular momentum oper-

ators of the Fermion (electron in QED, quark in

QCD) and boson (photon in QED, gluon in QCD)

part which satisfy both the gauge invariance and the

canonical momentum, angular momentum Lie alge-

bra. We have the electron, quark spin operator but

we never have the photon, gluon spin operator which

satisfy both the gauge invariance and spin Lie alge-

bra. Even it had been claimed in some textbooks that

it is impossible to have a well defined photon spin [3].

The nucleon spin structure study needs the gluon spin

operator. But after about ten years effort in search-

ing a gluon spin operator since the so-called proton

spin crisis, such an effort has almost been given up for

the last ten years. In this report we proposed a new

set of quark (electron), gluon (photon) momentum,

orbital angular momentum and spin operators which

satisfy both the gauge invariance and the canonical

momentum, angular momentum Lie algebra.

To achieve this a key point is to separate the gauge

field into pure gauge and physical parts: The former

is unphysical and can be gauged away as in Coulomb

gauge. It is used to compensate the induced unphys-

ical gauge field due to the local gauge transformation

of the Fermion field to keep the gauge invariance. The

physical part is responsible for the physical coupling

between Fermion and boson field. It is physical and

should be gauge invariant (covariant). We provide a

method to do this separation both for the Abelian

U(1) and the non-Abelian SU(3) gauge field. Re-

cently we found that such an idea can be extended to

gravitation field and help to get a general covariant

energy-momentum tensor.

Our proposed momentum operators for the

Fermion part are different from the canonical ones,

Eqs. (2), (10). The latter ones are not gauge in-

variant and so do not represent observables because

they include the unphysical pure gauge field contri-

bution. The new ones, Eqs. (36), (40), subtract the

unphysical pure gauge field contribution and so they

are gauge invariant and represent the observables.

We achieved to obtain a gauge invariant orbital

angular momentum and spin operators of the pho-

ton and gluon by means of the physical part of the

gauge field, Eq. (41). These operators provide the

theoretical basis of the widely used multipole radia-

tion analysis. For the photon spin and orbital angular

momentum used in quantum computation and com-

munication study, the gluon spin contribution in the

nucleon spin structure study, these operators are also

necessary.

The Poincaré algebra can not be fully maintained

for the momentum and angular momentum operators

of the individual Fermion and boson part of an inter-

acting gauge field system. What is the meaning of

these observables if they are not Lorentz covariant?

We have shown that the momentum and angular mo-

mentum algebra can be maintained simultaneously

with the gauge invariance. How much part of the

Poincaré algebra can be maintained for the operators

of the interacting Fermion and boson separately, es-

pecially to what extent the Lorentz covariance can be

maintained are left for further study.

The new asymptotic limit of quark and gluon par-

ton momentums of a nucleon have been obtained,

about 80 percent of nucleon momentum is carried

by quark. The immediate problem is the asymptotic

limit of the quark and gluon orbital angular momen-

tums and spins.

The gluon spin contribution to the nucleon spin is

under measurement in different labs. A lattice QCD

calculation with the gauge invariant gluon spin oper-

ator is called for.

To obtain the new PDFs, the factorization theo-

rems with respect to the new PDF formula should be

examined.

In summary, the nucleon internal structure is bet-

ter to be reexamined based on the new quark, gluon

momentum, orbital angular momentum, spin opera-

tors and parton distribution functions. Our picture

of the nucleon internal structure might be modified.

We thank Prof. X. D. Ji, K. F. Liu, J.W. Qiu

and S. J. Wang for stimulating discussions.
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