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Topological structure of the solitons solution

in SU(3) Dunne-Jackiw-Pi-Trugenberger model *
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Abstract By using φ-mapping topological current theory and gauge potential decomposition, we discuss

the self-dual equation and its solution in the SU(N) Dunne-Jackiw-Pi-Trugenberger model and obtain a new

concrete self-dual equation with a δ function. For the SU(3) case, we obtain a new self-duality solution and

find the relationship between the soliton solution and topological number which is determined by the Hopf

index and Brouwer degree of φ-mapping. In our solution, the flux of this soliton is naturally quantized.
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1 Introduction

Chern-Simons gauge fields play an important role

in planar physics, it is a new type of gauge theory

in two dimensions [1]. Those Chern-Simons theo-

ries are interesting both for their theoretical nove-

lty and practical applications such as the quantum

Hall effect in condensed matter physics [2] and the

fractional spin in quantum field theory [3]. Chern-

Simons term acquires dynamics via coupling to other

fields [4], and gets multifarious gauge theory. Non-

relativistic Chern-Simons theory supports solitons so-

lution. These static solutions can be obtained when

their Hamiltonian is minimal. R. Jackiw and S. Y.

Pi considered a gauged, nonliner Schödinger equa-

tion in two spatial dimensions, which describes non-

relativistic matter interacting with Chern-Simons

gauge fields [4, 5]. Then Dunne et al found that

the nonliner Schödinger equation with additional cou-

pling to non-Abelian Chern-Simons gauge fields also

possesses static, zero-energy solutions which satisfy

self-dual equations [6], they encountered various well-

known nonlinear equations of two dimentional physics

with spatial Ansätze for the Lie algebraic structures

of SU(N). This model is called the Dunne-Jackiw-

Pi-Trugenberger model (DJPT model). In our for-

mer work, we have studied the topological structure

of solitons solutions in the Jakiw-Pi model and SU(2)

DJPT model [7–9].

In this paper, by using gauge potential decompo-

sition and φ-mapping theory, we will discuss the topo-

logical structure of the self-dual solution in the DJPT

model. We will look for a new self-dual equation and

complete soliton solution of the SU(3) DJPT model,

and set up the relationship between the soliton solu-

tion and topological number which is determined by

the Hopf index and Brouwer degree. We also study

the quantization of the flux of the soliton.

2 The Toda equation with a δ function

The nonrelativistic self-dual Chern-Simons sys-

tem describes charged scalar fields Ψ with non-

relativistic dynamics, and this system is a 2+1 dimen-

sional space-time model, which minimally coupled to

gauge fields Aµ with Chern-Simons dynamics [6]. Its

Lagrange density is

L = −κLcs +itr(Ψ †D0Ψ)−
1

2m
tr((DiΨ)†DiΨ)+

1

4mκ
tr
(

[Ψ,Ψ †]2
)

, (1)
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where Ψ is the matter field matrix and the matter

density reads

ρ = i[Ψ,Ψ †], (2)

so the magnetic field is

B =− 1

κ
ρ, (3)

the Lcs in Eq. (1) is Chern-Simons Lagrange density

Lcs = εµνρtr

(

∂µ AνAρ +
2

3
AµAνAρ

)

. (4)

The energy density can be written as

ε =
1

2m
tr
(

(DiΨ)†DiΨ
)

, (5)

when the energy density is minimized, the non-

relativistic self-dual Chern-Simons equations have

static solutions, the self-dual equations are [6]

∂±Ψ +[A±,Ψ ] = 0, ∂∓Ψ †+[A∓,Ψ †] = 0, (6)

∂±A∓−∂∓A± +[A±,A∓] =± 2

κ
[Ψ,Ψ †], (7)

here using the notation A± for Ax ± iAy and ∂± for

∂x±i∂y, for definiteness, but without loss of general-

ity, we shall take κ > 0 and lower signs, so the self-dual

equation becomes

∂−Ψ +[A−,Ψ ] = 0,∂+ Ψ †+[A+,Ψ †] = 0, (8)

∂− A+−∂+ A−− [A+,A−] =
2

κ
[Ψ †,Ψ ]. (9)

Suppose the fields have the following Lie algebra

decomposition

Ψ =

r
∑

α=1

uαeα , (10)

A− =

r
∑

α=1

Aαhα , (11)

A+ =−
r
∑

α=1

A∗
αhα , (12)

in which hα and eα are the Chevalley basis of the

SU(N) Lie algebra, and r = N − 1 for SU(N) case.

We consider only the simply-laced algebras for easy

presentation:

[hα,eβ ] = Kβαeβ , (13)

[eα,e−β] = δβαhα, (14)

where K is nonsingular matrix and called Cartan ma-

trix. For SU(N) the Cartan matrix is (N−1)×(N−1),

with all diagonal equal to 2 and −1 entered above, the

matrix will be

K =































2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
... · · ·

...
...

...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −1 2































, (15)

substituting Eqs. (10)–(12) into Eq. (8) and Eq. (9),

we can obtain

∂− uα +uα

r
∑

β=1

KαβAβ = 0, ∂+ u†
α +u†

α

r
∑

β=1

KαβA∗
β = 0,

(16)

those equations requires that

∂−A∗
α +∂+ Aα =

2

κ
|uα |2 . (17)

We note that when uα is decomposed into two

scalar fields

uα = u1
α +iu2

α, (18)

a unit vector field nα is defined as

na
α =

ua
α√
ρα

,a = 1,2, (19)

where ρα is the matter density component which is

defined by ρα ≡ u∗
αuα. It is easy to prove that n

satisfies the constraint conditions

n1
αn1

α +n2
αn2

α = 1; n1
αdn1

α +n2
αdn2

α = 0. (20)

The Aα in Eq. (11) and Eq. (12) can be wriiten

as follows

Aα = A1
α +iA2

α; A?
α = A1

α− iA2
α, (21)

substituting Eq. (18) into Eq. (16), and using Eq. (19)

and Eq. (21), we get

−
r
∑

β=1

KαβAi
β =

2
∑

a,b=1

εabna
α ∂i n

b
α−

1

2
εij ∂j lnρα, (22)

where the decomposition of U(1) gauge potential has

been used [10]. In Eq. (22) i, j = 1,2 and using the

symbols ∂1 = ∂x and ∂2 = ∂y. Substituting Eq. (21)

and Eq. (22) into Eq. (17), and making use of the φ-

mapping topological current theory [11], we can get

∇2 lnρα =− 2

κ

r
∑

β=1

ρβ −4πδ2(uα)J
(

uα

r

)

, (23)

here uα = (u1
α,u2

α), r = (x,y), and the J
(

uα

r

)

is

Jacobian

J
(

uα

r

)

=
1

2

2
∑

a,b,i,j=1

εabεij ∂i u
a
α ∂j ub

α , (24)
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it is obvious that when ρα 6= 0, this Eq. (23) will be

the Toda equation [12], and the δ function describes

the singular point of ρα = 0.

3 Topological structure and flux of the

soliton solution in the SU(3) DJPT

model

In this section we will study the Toda equation

with a δ function, for SU(2), the toda equation will

be the Liouville equation, the solution of this equa-

tion is like U(1) case [9].

For SU(3), Eq. (23) gives two equations

∇2 lnρ1 =− 2

κ
(2ρ1−ρ2)−4πδ2(u1)J

(

u1

r

)

, (25)

∇2 lnρ2 =− 2

κ
(2ρ2 +ρ1)−4πδ2(u2)J

(

u2

r

)

, (26)

when ρ 6= 0, Eq. (25) and Eq. (26) will be

∇2 lnρ1 =− 2

κ
(2ρ1−ρ2), (27)

∇2 lnρ2 =− 2

κ
(2ρ2 +ρ1), (28)

that are solved by [6]

ρ1 =
κ

2
∇2 ln(1+ |ϕ1|2 +

1

4
|ϕ1ϕ2 +Φ|2), (29)

ρ2 =
κ

2
∇2 ln(1+ |ϕ2|2 +

1

4
|ϕ1ϕ2−Φ|2), (30)

where ϕ1, ϕ1 and Φ depend only on z with

Φ′ = ϕ′
1ϕ2−ϕ1ϕ

′
2, (31)

a convenient choice is

ϕ1 =

(

z

z0

)N1

, ϕ2 =

(

z

z0

)N2

, (32)

then

Φ =
N1−N2

N1 +N2

(

z

z0

)N1+N2

, (33)

so the density is

ρ1 =
κ

2
∇2 ln

(

1+

(

r

r0

)2N1

+

∣

∣

∣

∣

N1

2(N1 +N2)

∣

∣

∣

∣

(

r

r0

)2(N1+N2)
)

, (34)

ρ2 =
κ

2
∇2 ln

(

1+

(

r

r0

)2N2

+

∣

∣

∣

∣

N2

2(N1 +N2)

∣

∣

∣

∣

(

r

r0

)2(N1+N2)
)

. (35)

Under this radially symmetric situation, ∇2 lnρ

can be expressed as

∇2 lnρ =
∂2

∂r2
lnρ+

1

r
lnρ, (36)

integrating Eq. (23)∫
∇2 lnρ1dr =−

∫
κ

2
(2ρ1−ρ2)+4πδ2(u1)J

(

u1

r

)

dr,

(37)

in order to investigate the density on single point

r = 0, we only calculate

lim
r→0

∫
∇2 lnρ1dr =− lim

r→0

∫
4πδ2(u1)J

(

u1

r

)

dr, (38)

the left side of this equation is

lim
r→0

∫
∇2 lnρ1dr = 4π(N1−1), (39)

and the right side is

− lim
r→0

∫
4πδ2(u1)J

(

u1

r

)

dr =−4πQ1, (40)

from Eq. (39) and Eq. (40) we can obtain

N1 =−Q1 +1, (41)

here Q1 is the topological number of the soliton,

Q1 = β1η1, (42)

where β1 is the positive integer (the Hopf index of the

zero point) and η1 = ±1, the Brouwer degree of the

vector field u1 [13].

And in the same way

N2 =−Q2 +1, (43)

Eq. (41) and Eq. (43) can be written in one equation

Nα =−Qα +1,α = 1,2, (44)

from here we can see that Nα must be an integer.

The matter density is

ρ = i[Ψ,Ψ †] = iρ1h
1 +iρ2h

2, (45)

the magnetic field B is

B =− 1

κ
ρ, (46)

so the magnetic flux of this soliton is

Φ =

∫∞

0

Bdr = 2πi(Q1+Q2−2)(h1 +h2), (47)

in which h1 and h2 are the Chevalley basis of the

SU(3) Lie algebra, and this equation indicates that

the magnetic flux is quantized.
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4 Summary and concluding remarks

When the nonliner Schödinger equation is coupled

to Chern-Simons fields, it gives static, zero-energy

solutions that satisfy self-dual equations, the solu-

tions correspond to solitons and vortices. In this pa-

per, we discuss the Toda equation of DJPT model

with gauge potential decomposition and φ-mapping

theory, and find a new self-dual equation (Eq. (23))

which is a Toda equation with a δ function, when

ρα 6= 0, Eq. (23) will be the Toda equation, and the

δ function describes the singular point of ρα = 0. In

Sec. 3, we solve Eq. (23) when the gauge Lie algebraic

is SU(3) and find the parameters N1 and N2 of the

solution are determined by the topological number of

the soliton, so the flux of the soliton is quantized.
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