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Structure of the even-even 78−84Kr isotopes within

SD-pair shell model *
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Abstract The collective properties in the even-even 78−84Kr isotopes have been studied within the framework

of the SD-pair shell model. It is found that the collectivity of low-lying states in the even-even Kr isotopes

can be described very well.
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1 Introduction

In the past two decades even-even Kr isotopes

have been the objects of considerable experimental

and theoretical attention due to the evolution of our

understanding of nuclear structure [1–6]. Detailed

theoretical investigations [2–4] have mainly been per-

formed in the framework of the interacting boson

model (IBM) [7]. The results show that the excitation

energy, E2 and M1 transitions can be reproduced very

well within the IBM. Especially the 0+
2 state, which

is particularly interesting to clarify the contribution

of the different excitation mechanisms at low energy

[2, 3, 5], can also be fitted very well.

Since the SD-pair shell model (SDPSM) [8–10]

can describe the properties of low-lying states in even-

even Xe, Ba,Ce and Mo isotopes [9, 11–18], it is inter-

esting to see whether the properties in the Kr isotopes

can be reproduced within the SDPSM, and this is the

aim of this paper.

2 A brief review of the model

To this end, a Hamiltonian as in Refs. [15, 17, 18]

is used, which is

H = Hν +Hπ +κQ(2)
π

·Q(2)
ν

, (1)

Hσ = H0−G0σSσ
†Sσ −G2σP (2)†

σ P (2)
σ −κσQ(2)

σ ·Q(2)
σ ,

(2)

H0 =
∑

aσ

εaσnaσ, (3)

S†
σ =

∑

a

√
2j+1

2
(C†

aσ ×C†
aσ)(0),

P (2)†
µ =

∑

ab

Qab(C
†
aσ ×C†

bσ)(2)µ ,

Q(2)
µ =

n∑

i=1

r2
i Y2µ(θiφi), (4)

and its second quantized form is given by

Q(2)
µ =

∑

cd

q(cd2)P 2
µ (cd), (5)

q(cd2) = (−)c− 1

2

ĉd̂√
20π

C2 0
c 1

2
,d− 1

2

∆cd2〈Nlc|r2|Nld〉,

(6)

P t
µ(cd) =

(
C†

c × C̃d

)t

µ
, (7)

where N is the principal quantum number of the har-

monic oscillator wave function, such that the energy

is (N+3/2)~ω0. The matrix elements for r2 are given

as

〈Nlc|r2|Nld〉=




(N +3/2)r2
0, lc = ld,

ϕ[(N + ld +2±1)(N − ld +1∓1)]1/2r2
0 , lc = ld±2,

(8)
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where the phase factor ϕ can be taken either as −1

or +1, and r2
0 =

~

mpω0

= 1.012A1/3 fm2.

The building blocks of the SDPSM are “realistic”

collective pairs Ar†
µ of angular momentum r = 0,2

with projection µ, built from many non-collective

pairs
(
C†

a×C†
b

)r

µ
in the single-particle levels a and

b,

Ar†
µ =

∑

ab

y(abr)
(
C†

a×C†
b

)r

µ
, (9)

y(abr) = −θ(abr)y(bar), θ(abr) = (−)a+b+r,

where y(abr) are the distribution coefficients. How

to determine these “realistic” S-D pairs is an impor-

tant question. The structures of the S and D pairs

depend on the Hamiltonian. Different S-D pairs rep-

resent different truncations. In this paper the S-pair

is fixed by the BCS method [19, 20]. Namely, for fixed

G0ν and G0π, ua and υa are obtained by

Hσ = H0σ +G0σS†(σ)S(σ), (10)

and then the S-pair structure is fixed as

S† =
∑

a

y(aa0)(C†
a ×C†

a)
0, y(aa0) = â

υa

ua

.

The D-pair is obtained by using the commutator [21],

D† =
1

2
[Q2,S†] =

∑

ab

y(ab2)(C†
a×C†

b )2, (11)

y(ab2) =−1

2
q(ab2)

[
y(aa0)

â
+

y(bb0)

b̂

]
. (12)

The E2 and M1 transition operators are

T (E2) = eπQ(2)
π

+eνQ(2)
ν

,

T (M1) = T (M1)π +T (M1)ν,

T (M1)σ =

√
3

4π
(glσL+gsσS), (13)

where eπ and eν are effective charges of the protons

and neutrons, glσ and gsσ are the orbital and spin

effective gyro-magnetic ratios.

In this work Zcore = 28 and Ncore = 50 are taken as

the cores, and protons(neutrons) are treated as par-

ticles(holes) with respect to those cores. The single

particle energy levels for protons are set to be 1.11, 0,

0.77 and 2.5 (in units of MeV) for p1/2, p3/2, f5/2 and

g9/2, respectively. Since the single-particle energies

for neutron holes can not be determined experimen-

tally, the same set of energy levels as those of the

protons are used for simplicity.

Fig. 1. The excitation energies for the even-even Kr nuclei. The experimental data are taken from Ref. [22].
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3 Results

By fitting the excitation energies of 78−84Kr, the

parameters G0π, G0ν, and κ are fixed and given in

Table 1. The other parameters G2σ and κσ are fixed

to be G2π = G2ν = 0.052 MeV/r4
0 and κπ = κν =

0.01 MeV/r4
0 for all the nuclei.

Table 1. The parameters fixed by fitting the

excitation energies for 78−84Kr.

84Kr 82Kr 80Kr 78Kr

Gπ/MeV 0.180 0.14 0.14 0.21

Gν/MeV 0.180 0.13 0.12 0.20

κ/(MeV/r4
0) 0.010 0.042 0.032 0.01

The calculated and experimental spectra are

shown in Fig. 1. One can see that a general agreement

between the calculation and experiment is achieved.

The prediction of the ground states and quasi-γ band

can be considered nearly satisfactory.

The calculated E2 transition values are given in

Table 2 with the label BCS. The effective charges are

set to be eπ = 2e and eν = −1.9e since neutrons are

treated as holes in this paper. From Table 2 one can

see that in comparison with those of the IBM and

experimental data, the B(E2) values are fitted very

well in the SDPSM.

The nature of the low-lying 0+
2 states in even-

even nuclei of the A ≈ 70−80 mass region is still an

open question. Detailed theoretical work has mainly

been performed in the framework of the IBM. The

0+
2 states were interpreted as “intruder” states and

can be fitted rather well in the IBM. Table 2 shows

that although the calculated B(E2;0+
2 → 2+

1 ) are still

smaller than those of the experiment, they are con-

sidered to be reasonably well reproduced, and most

of them are close to those of the IBM results.

Table 2. The E2 transitions. The experimental data are taken from Refs. [1, 2].

84Kr 82Kr 80Kr 78Kr
Ji →Jf BCS Expt. BCS IBM Expt. BCS IBM Expt. BCS IBM

2+
1 → 0+

1 0.080 0.044(2) 0.068 0.051 0.076(6) 0.088 0.071 0.134(5) 0.1037 0.097

4+
1 → 2+

1 0.087 0.065(24) 0.060 0.078 0.064(6) 0.085 0.078 0.180(14) 0.1465 0.152

6+
1 → 4+

1 0.089 0.075 0.13(3) 0.114 0.12 0.20(2) 0.1672 0.17

2+
2 → 2+

1 0.078 0.016(8) 0.07 0.030 0.05(1) 0.063 0.07 0.013(4) 0.1458 0.086

2+
2 → 0+

1 0.001 0.0002(1) 0.005 0.001 0.0006(1) 0.003 0.001 0.005(1) 0.0001 0.002

2+
3 → 2+

1 0.000 0.014(8) 0.002 0.036 0.033 0.049(3) 0.0019

3+
1 → 2+

1 0.001 0.002 0.0012(2) 0.000 0.0009 0.0006(1) 0.0003

4+
2 → 2+

1 0.007 0.024(6) 0.020 0.001 0.0007(4) 0.039 0.0014 0.0001

4+
2 → 2+

2 0.020 0.018(5) 0.025 0.028 0.10(5) 0.034 0.04 0.093(12) 0.0521 0.063

4+
2 → 4+

1 0.086 0.08(2) 0.011 0.009 0.07(4) 0.007 0.02 0.040(5) 0.0362 0.04

0+
2 → 2+

1 0.001 0.030(10) 0.018 0.055 0.07(3) 0.022 0.07 0.091(5) 0.0425 0.09

Table 3. The M1 transitions. The experimental data are taken from Ref. [4].

78Kr 80Kr 82Kr 84Kr
Ji →Jf Expt. IBM BCS Expt. IBM BCS Expt. IBM BCS Expt. IBM BCS

2+
2 → 2+

1 0.016(2) 0.006 0.0070 0.0004(2) 0.002 0.1743 0.001(1) 0.009 0.02 0.037(12) 0.021 0.0658

2+
3 → 2+

1 0.0088 0.2275 0.007 0.2742

2+
4 → 2+

1 0.2997 0.0002 0.152 0.1558

2+
5 → 2+

1 0.00001 0.011 0.000 0.000

5+
1 → 4+

1 0.001(1) 0.004

In Table 3 the M1 transitional values are listed.

Since it is difficult to determine the g-factor uniquely,

the effective g-factors are fixed as glπ = 1.1, glν =

−0.1, gsπ = 3.910 and gsν = −2.678 (all in units of

µ2
N) as in Ref. [23]. The experimental data and the

IBM results are also given. The calculated results

shows that the strongest M1 transitions occur in (2+
3 ,

2+
4 ), 2+

4 , (2+
2 , 2+

3 ), and 2+
4 for 84Kr, 82Kr, 80Kr and

78Kr, respectively. The lack of the experimental data

did not allow for a definite conclusion.

4 A brief summary

In summary, within the framework of the SDPSM,

the general properties of the low-lying states in even-

even Kr nuclei have been studied. This analysis shows
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that, since the properties in the even-even Kr nuclei

can be reproduced very well in the SDPSM, it implies

that the IBM has a sound shell-model foundation and

the truncation scheme adopted in the SD-pair shell

model seems reasonable.
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