Structure of the even－even ${ }^{78-84} \mathrm{Kr}$ isotopes within $S D$－pair shell model ${ }^{*}$

WANG Fu－Yong（王付永）LI Lei（李磊）${ }^{1)}$ LUO Yan－An（罗延安 $)^{2)}$
School of Physics，Nankai University，Tianjin 300071，China

Abstract

The collective properties in the even－even ${ }^{78-84} \mathrm{Kr}$ isotopes have been studied within the framework of the $S D$－pair shell model．It is found that the collectivity of low－lying states in the even－even Kr isotopes can be described very well．

Key words $S D$－pair shell model，spectrum，E2 transition
PACS 21．60．Cs

1 Introduction

In the past two decades even－even Kr isotopes have been the objects of considerable experimental and theoretical attention due to the evolution of our understanding of nuclear structure［1－6］．Detailed theoretical investigations［2－4］have mainly been per－ formed in the framework of the interacting boson model（IBM）［7］．The results show that the excitation energy，E2 and M1 transitions can be reproduced very well within the IBM．Especially the 0_{2}^{+}state，which is particularly interesting to clarify the contribution of the different excitation mechanisms at low energy $[2,3,5]$ ，can also be fitted very well．

Since the $S D$－pair shell model（SDPSM）［8－10］ can describe the properties of low－lying states in even－ even $\mathrm{Xe}, \mathrm{Ba}, \mathrm{Ce}$ and Mo isotopes［9，11－18］，it is inter－ esting to see whether the properties in the Kr isotopes can be reproduced within the SDPSM，and this is the aim of this paper．

2 A brief review of the model

To this end，a Hamiltonian as in Refs．［15，17，18］ is used，which is

$$
\begin{align*}
H & =H_{v}+H_{\pi}+\kappa Q_{\pi}^{(2)} \cdot Q_{v}^{(2)} \tag{1}\\
H_{\sigma} & =H_{0}-G_{0 \sigma} \mathcal{S}_{\sigma}^{\dagger} \mathcal{S}_{\sigma}-G_{2 \sigma} P_{\sigma}^{(2) \dagger} P_{\sigma}^{(2)}-\kappa_{\sigma} Q_{\sigma}^{(2)} \cdot Q_{\sigma}^{(2)} \tag{2}
\end{align*}
$$

$$
\begin{align*}
H_{0} & =\sum_{a \sigma} \epsilon_{a \sigma} n_{a \sigma}, \tag{3}\\
\mathcal{S}_{\sigma}^{\dagger} & =\sum_{a} \frac{\sqrt{2 j+1}}{2}\left(C_{a \sigma}^{\dagger} \times C_{a \sigma}^{\dagger}\right)^{(0)}, \\
P_{\mu}^{(2) \dagger} & =\sum_{a b} Q_{a b}\left(C_{a \sigma}^{\dagger} \times C_{b \sigma}^{\dagger}\right)_{\mu}^{(2)}, \\
Q_{\mu}^{(2)} & =\sum_{i=1}^{n} r_{i}^{2} Y_{2 \mu}\left(\theta_{i} \phi_{i}\right), \tag{4}
\end{align*}
$$

and its second quantized form is given by

$$
\begin{align*}
Q_{\mu}^{(2)} & =\sum_{c d} q(c d 2) P_{\mu}^{2}(c d) \tag{5}\\
q(c d 2) & =(-)^{c-\frac{1}{2}} \frac{\widehat{c} \widehat{d}}{\sqrt{20 \pi}} C_{c \frac{1}{2}, d-\frac{1}{2}}^{20} \Delta_{c d 2}\left\langle N l_{c}\right| r^{2}\left|N l_{d}\right\rangle \\
P_{\mu}^{t}(c d) & =\left(C_{c}^{\dagger} \times \tilde{C}_{d}\right)_{\mu}^{\mathrm{t}} \tag{6}
\end{align*}
$$

where N is the principal quantum number of the har－ monic oscillator wave function，such that the energy is $(N+3 / 2) \hbar \omega_{0}$ ．The matrix elements for r^{2} are given as

$$
\begin{align*}
& \left\langle N l_{c}\right| r^{2}\left|N l_{d}\right\rangle= \\
& \begin{cases}(N+3 / 2) r_{0}^{2}, & l_{c}=l_{d} \\
\varphi\left[\left(N+l_{d}+2 \pm 1\right)\left(N-l_{d}+1 \mp 1\right)\right]^{1 / 2} r_{0}^{2}, & l_{c}=l_{d} \pm 2\end{cases} \tag{8}
\end{align*}
$$

[^0]where the phase factor φ can be taken either as -1 or +1 , and $r_{0}^{2}=\frac{\hbar}{m_{\mathrm{p}} \omega_{0}}=1.012 A^{1 / 3} \mathrm{fm}^{2}$.

The building blocks of the SDPSM are "realistic" collective pairs $A_{\mu}^{r \dagger}$ of angular momentum $r=0,2$ with projection μ, built from many non-collective pairs $\left(C_{a}^{\dagger} \times C_{b}^{\dagger}\right)_{\mu}^{r}$ in the single-particle levels a and b,

$$
\begin{align*}
A_{\mu}^{r \dagger} & =\sum_{a b} y(a b r)\left(C_{a}^{\dagger} \times C_{b}^{\dagger}\right)_{\mu}^{r}, \tag{9}\\
y(a b r) & =-\theta(a b r) y(b a r), \quad \theta(a b r)=(-)^{a+b+r},
\end{align*}
$$

where $y(a b r)$ are the distribution coefficients. How to determine these "realistic" $S-D$ pairs is an important question. The structures of the S and D pairs depend on the Hamiltonian. Different S - D pairs represent different truncations. In this paper the S-pair is fixed by the BCS method [19, 20]. Namely, for fixed $G_{0 \nu}$ and $G_{0 \pi}, u_{\mathrm{a}}$ and v_{a} are obtained by

$$
\begin{equation*}
H_{\sigma}=H_{0 \sigma}+G_{0 \sigma} \mathcal{S}^{\dagger}(\sigma) \mathcal{S}(\sigma) \tag{10}
\end{equation*}
$$

and then the S-pair structure is fixed as

$$
S^{\dagger}=\sum_{a} y(a a 0)\left(C_{a}^{\dagger} \times C_{a}^{\dagger}\right)^{0}, \quad y(a a 0)=\hat{a} \frac{v_{a}}{u_{a}}
$$

Fig. 1. The excitation energies for the even-even Kr nuclei. The experimental data are taken from Ref. [22].

3 Results

By fitting the excitation energies of ${ }^{78-84} \mathrm{Kr}$, the parameters $G_{0 \pi}, G_{0 v}$, and κ are fixed and given in Table 1. The other parameters $G_{2 \sigma}$ and κ_{σ} are fixed to be $G_{2 \pi}=G_{2 v}=0.052 \mathrm{MeV} / r_{0}^{4}$ and $\kappa_{\pi}=\kappa_{v}=$ $0.01 \mathrm{MeV} / r_{0}^{4}$ for all the nuclei.

Table 1. The parameters fixed by fitting the excitation energies for ${ }^{78-84} \mathrm{Kr}$.

	${ }^{84} \mathrm{Kr}$	${ }^{82} \mathrm{Kr}$	${ }^{80} \mathrm{Kr}$	${ }^{78} \mathrm{Kr}$
G_{π} / MeV	0.180	0.14	0.14	0.21
G_{ν} / MeV	0.180	0.13	0.12	0.20
$\kappa /\left(\mathrm{MeV} / r_{0}^{4}\right)$	0.010	0.042	0.032	0.01

The calculated and experimental spectra are shown in Fig. 1. One can see that a general agreement between the calculation and experiment is achieved.

The prediction of the ground states and quasi- γ band can be considered nearly satisfactory.

The calculated E2 transition values are given in Table 2 with the label BCS. The effective charges are set to be $e_{\pi}=2 \mathrm{e}$ and $e_{\nu}=-1.9 \mathrm{e}$ since neutrons are treated as holes in this paper. From Table 2 one can see that in comparison with those of the IBM and experimental data, the $B(\mathrm{E} 2)$ values are fitted very well in the SDPSM.

The nature of the low-lying 0_{2}^{+}states in eveneven nuclei of the $A \approx 70-80$ mass region is still an open question. Detailed theoretical work has mainly been performed in the framework of the IBM. The 0_{2}^{+}states were interpreted as "intruder" states and can be fitted rather well in the IBM. Table 2 shows that although the calculated $B\left(\mathrm{E} 2 ; 0_{2}^{+} \rightarrow 2_{1}^{+}\right)$are still smaller than those of the experiment, they are considered to be reasonably well reproduced, and most of them are close to those of the IBM results.

Table 2. The E2 transitions. The experimental data are taken from Refs. [1, 2].

$J_{i} \rightarrow J_{f}$	${ }^{84} \mathrm{Kr}$	${ }^{82} \mathrm{Kr}$			${ }^{80} \mathrm{Kr}$			${ }^{78} \mathrm{Kr}$		
	BCS	Expt.	BCS	IBM	Expt.	BCS	IBM	Expt.	BCS	IBM
$2_{1}^{+} \rightarrow 0_{1}^{+}$	0.080	0.044(2)	0.068	0.051	0.076(6)	0.088	0.071	0.134(5)	0.1037	0.097
$4_{1}^{+} \rightarrow 2_{1}^{+}$	0.087	0.065(24)	0.060	0.078	0.064(6)	0.085	0.078	0.180(14)	0.1465	0.152
$6_{1}^{+} \rightarrow 4_{1}^{+}$	0.089		0.075		0.13(3)	0.114	0.12	0.20(2)	0.1672	0.17
$2_{2}^{+} \rightarrow 2_{1}^{+}$	0.078	0.016(8)	0.07	0.030	0.05(1)	0.063	0.07	0.013(4)	0.1458	0.086
$2_{2}^{+} \rightarrow 0_{1}^{+}$	0.001	0.0002(1)	0.005	0.001	0.0006(1)	0.003	0.001	0.005(1)	0.0001	0.002
$2_{3}^{+} \rightarrow 2_{1}^{+}$	0.000	0.014(8)	0.002	0.036		0.033		0.049(3)	0.0019	
$3_{1}^{+} \rightarrow 2_{1}^{+}$	0.001		0.002		0.0012(2)	0.000	0.0009	0.0006(1)	0.0003	
$4_{2}^{+} \rightarrow 2_{1}^{+}$	0.007	0.024(6)	0.020	0.001	0.0007(4)	0.039	0.0014		0.0001	
$4_{2}^{+} \rightarrow 2_{2}^{+}$	0.020	0.018(5)	0.025	0.028	0.10(5)	0.034	0.04	0.093(12)	0.0521	0.063
$4_{2}^{+} \rightarrow 4_{1}^{+}$	0.086	0.08(2)	0.011	0.009	0.07(4)	0.007	0.02	0.040(5)	0.0362	0.04
$0_{2}^{+} \rightarrow 2_{1}^{+}$	0.001	0.030(10)	0.018	0.055	0.07(3)	0.022	0.07	0.091(5)	0.0425	0.09

Table 3. The M1 transitions. The experimental data are taken from Ref. [4].

$J_{i} \rightarrow J_{f}$	${ }^{78} \mathrm{Kr}$		${ }^{80} \mathrm{Kr}$			${ }^{82} \mathrm{Kr}$			${ }^{84} \mathrm{Kr}$		
	IBM	BCS	Expt.	IBM	BCS	Expt.	IBM	BCS	Expt.	IBM	BCS
$2_{2}^{+} \rightarrow 2_{1}^{+} 0.016(2)$	0.006	0.0070	0.0004(2)	0.002	0.1743	0.001(1)	0.009	0.02	0.037(12)	0.021	0.0658
$2_{3}^{+} \rightarrow 2_{1}^{+}$		0.0088			0.2275			0.007			0.2742
$2_{4}^{+} \rightarrow 2_{1}^{+}$		0.2997			0.0002			0.152			0.1558
$2_{5}^{+} \rightarrow 2_{1}^{+}$		0.00001			0.011			0.000			0.000
$5_{1}^{+} \rightarrow 4_{1}^{+} 0.001(1)$	0.004										

In Table 3 the M1 transitional values are listed. Since it is difficult to determine the g-factor uniquely, the effective g-factors are fixed as $g_{1 \pi}=1.1, g_{1 v}=$ $-0.1, g_{\mathrm{s} \pi}=3.910$ and $g_{\mathrm{sv}}=-2.678$ (all in units of $\left.\mu_{\mathrm{N}}^{2}\right)$ as in Ref. [23]. The experimental data and the IBM results are also given. The calculated results shows that the strongest M1 transitions occur in $\left(2_{3}^{+}\right.$, $\left.2_{4}^{+}\right), 2_{4}^{+},\left(2_{2}^{+}, 2_{3}^{+}\right)$, and 2_{4}^{+}for ${ }^{84} \mathrm{Kr},{ }^{82} \mathrm{Kr},{ }^{80} \mathrm{Kr}$ and
${ }^{78} \mathrm{Kr}$, respectively. The lack of the experimental data did not allow for a definite conclusion.

4 A brief summary

In summary, within the framework of the SDPSM, the general properties of the low-lying states in eveneven Kr nuclei have been studied. This analysis shows
that, since the properties in the even-even Kr nuclei can be reproduced very well in the SDPSM, it implies that the IBM has a sound shell-model foundation and
the truncation scheme adopted in the $S D$-pair shell model seems reasonable.

References

1 Giannatiempo A et al. Phys. Rev. C, 1995, 52:2444
2 Giannatiempo A et al. Phys. Rev. C, 1993, 47: 521
3 Dejbakhsh H, Kolomieys A, Shlomo S et al. Phys. Rev. C, 1995, 51: 573
4 Giannatiempo A, Sona P et al. Phys. Rev. C, 2000, 62: 044302
5 Giannatiempo A et al. Phys. Rev. C, 2005, 72: 044308
6 Clément E et al. Phys. Rev. C, 2007, 75: 054313
7 Iachello F, Arima A. The Interacting Boson Model. Cambridge, New York: Cambridge University Press, 1987
8 CHEN J Q. Nucl. Phys. A, 1997, 626: 686
9 CHEN J Q, LUO Y A. Nucl. Phys. A, 1998, 639: 615
10 ZHAO Y M, Yoshinaga N, Yamaji S et al. Phys. Rev. C, 2000, 62: 014304
11 LUO Y A, CHEN J Q, Draayer J P. Nucl. Phys. A, 2000, 669: 101
12 ZHANG R P, LUO Y A, NING P Z. Europhys. Lett., 2006,

73: 520
13 MENG X F, WANG F R, LUO Y A et al. Phys. Rev. C, 2008, 77: 047304
14 ZHAO Y M, Yoshinaga N, Yamaji S at al. Phys. Rev. C, 2000, 62: 014316
15 ZHAO Y M, Yamaji S, Yoshinaga N et al. Phys. Rev. C, 2000, 62: 014315
16 ZHAO Y M, Yoshinaga N, Yamaji S et al. Phys. Rev. C, 2000, 62: 024322
17 JIA L Y, ZHANG H, ZHAO Y M. Phys. Rev. C, 2007, 75: 034307
18 Yoshinaga N, Higashiyama K. Phys. Rev. C, 2004, 69: 054309
19 Otsuka T, Arima A, Iachello F et al. Phys. Lett. B, 1978, 76: 139
20 Otsuka T. Phys. Rev. Lett., 1981, 46: 710
21 Iachello F, Talmi I. Rev. Mod. Phys., 1987, 59: 1339
22 http://www.nndc.bnl.gov/nudat2/adopted-searchi.jsp
23 Zamick L. Phys. Lett. B, 1986, 167: 1

[^0]: Received 2 September 2009
 ＊Supported by NSFC（10675063）
 1）E－mail：lilei＠nankai．edu．cn
 2）E－mail：luoya＠nankai．edu．cn
 ©2009 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

