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A new method to determine the projected
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Abstract In order to determine the projected coordinate origin in the cone-beam CT scanning system with

respect to the Feldkamp-Davis-Kress (FDK) algorithm, we propose a simple yet feasible method to accurately

measure the projected coordinate origin. This method was established on the basis of the theory that the

projection of a spherical object in the cone-beam field is an ellipse. We first utilized image processing and the

least square estimation method to get each major axis of the elliptical Digital Radiography (DR) projections of

a group of spherical objects. Then we determined the intersection point of the group of major axis by solving

an over-determined equation set that was composed by the major axis equations of all the elliptical projections.

Based on the experimental results, this new method was proved to be easy to implement in practical scanning

systems with high accuracy and anti-noise capability.
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1 Introduction

With the rapid development of computer technol-

ogy and the wide use of flat panel detectors, three-

dimensional (3-D) CT has recently generated intense

interest from both scientific studies and practical ap-

plications in the non-destructive testing (NDT) field

[1, 2]. Among various 3-D reconstruction algorithms,

the Feldkamp-Davis-Kress (FDK) algorithm [3, 4] has

been demonstrated to be the most effective algorithm

in practical engineering applications from the point of

view of utilizing computing efficiency and complexity

of practical realization. Basically, precise determina-

tion of the projected coordinate origin in the three-

dimensional computed tomography scanning system

is very important in the FDK algorithm. However,

direct measurement of the projected position of the

X-ray focus on the imaging plane of the detector,

namely, the projected coordinate origin of 3D-CT sys-

tem, is difficult to obtain. The measurement error

will decrease the accuracy of the image reconstruction

and cause artifacts in the reconstructed image. Pre-

vious studies [5, 6] have shown that the measurement

method proposed on the basis of the nonlinear least

square estimation was capable of determining projec-

tion center coordinates of small spherical objects, but

the method had serious limitations because of its sig-

nificant dependence on the initial value of estimated

parameters, in which a small variance in the initial

value would cause a significant change in the results

estimated, and sometimes even abrupt changes were

observed. In subsequent studies, Frederic et al. [7]

proposed an analytical measurement method based

on the assumption that two small spherical objects

moving around in the cone-beam will have their pro-

jection centers tracing two ellipses on the detector. K.

Yang et al. [8] put forward another method, which

used multiple projection images acquired from rotat-

ing point-like objects to derive the geometrical pa-

rameters of a 3D-CT system. Beque [9] used the pro-

jection locations of tomographic acquisition of three

point sources located at known distances from each
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other to estimate the geometrical parameters. Y. Sun

et al proposed an improved method that used one

projection of four phantoms to derive the geometri-

cal parameters [10]. Summarizing, these methods will

result in complex calculations and difficulties in prac-

tical applications, although their mathematical ex-

pression and simulation results are ideal. In addition

to the above analytical methods, an easier method

involving a grid collimator was used to estimate the

projected coordinate origin [11]. The gray level distri-

bution of the Digital Radiography (DR) image of the

grid collimator was calculated by using the method

of Gauss fitting. However, this method will result in

low accuracy because of the non-ideal DR image of

the grid collimator.

In this paper, we propose a simple, feasible and

accurate method to determine the projected coordi-

nate origin based on the theory that the projection

of a spherical object in the cone-beam field is an el-

lipse. We first utilized image processing and the least

square estimation method to get each major axis of

the elliptical DR projections of a group of spherical

objects. Then we determined the intersection point of

the group of major axis by solving an over-determined

equation set that was composed by the major axis

equations of all the elliptical projections. The in-

tersection point is the X-ray focus projection on the

imaging plane of the detector. Based on the exper-

imental results, this new method was proved to be

easy to implement in practical scanning systems with

high accuracy and anti-noise capability.

2 Methods

Figure 1 is an illustration of FDK scanning. Let’s

assume that the central ray (PO) of the cone-beam is

perpendicular to the imaging plane of the flat panel

detector, and the projection of the X-ray focus (point

P ) is point O, where the coordinates in the xdOdzd

system are (λx, λz). xdOdzd is the imaging plane co-

ordinate system, which is fixed when the cone-beam

scanning system is assembled. According to the FDK

algorithm, point O is considered to be the coordinate

origin of 3D-CT reconstruction, and its coordinates

(λx, λz) should be measured precisely. Our measur-

ing method makes the following assumptions:

1) The cone-beam imaging system is defined in

the xyz coordinate system.

2) A spherical object with radius r in the cone-

beam, as shown in Fig. 2.

To simplify the derivation, the X-ray focus F is as-

sumed on the z-axis, and the sphere center C on the

yOz -plane. Thus, the coordinates of points F and C

are (0, 0, D) and (0, by, bz), respectively. According

to the actual scanning system, the following formula

is obtained,

|D−bz|> r > 0. (1)

Fig. 1. A schematic of the FDK scanning method.

Figure 2 shows that by starting from the focus F

and enveloping the sphere, the surface exhibits a cone

shape, which we defined as Ω with semi-cone angle

α. Intersection between Ω and the spherical surface

is a space curve (defined as η), which is proved to

be actually a circle centered on FC with a radius of

r cos α. By taking any point M(x,y,z) on surface

Ω, the angle produced between vectors of
−−→
FM and

−−→
FC is α. Thus, we have the following equation of

surface Ω,
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Fig. 2. A schematic of sphere projection in the

cone beam.
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yby +(z−D)(bz−D)
√

x2 +y2 +(z−D)2
√

b2
y +(bz −D)2

= cosα. (2)

The intersecting curve of surface Ω and the xOy-

plane is the contour of the sphere’s projection on

the xOy- plane, which is defined as ξ. According to

Eq. (2), the following equation of ξ is obtained,

yby +(z−D)(bz−D)
√

x2 +y2 +(z−D)2
√

b2

y +(bz −D)2
= cosα |z=0,

i.e.,

ξ :
[yby−D(bz −D)]

2

(x2 +y2 +D2)[b2

y +(bz −D)2]
= cosα2. (3)

Eq. (3) can be simplified as

k2(x2 +y2 +D2) = (yby +p)2.

In the case of k2 = [b2

y + (bz −D)2] cosα2 and p =

−D(bz−D), the above equation can further be trans-

formed to

k2x2 +(k2−b2

y)

(

y−
byp

k2−b2
y

)2

= p2−k2D2 +
b2

yp
2

k2−b2

y

. (4)

For any point of N (N ∈ η), the following geometrical

relationship is satisfied,
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Eqs. (5), (6) and (4) can be integrated as

k2x2 +[(bz −D)2−r2]

(

y−
byp

(bz −D)2−r2

)

=
D2r2k2

(bz−D)2−r2
,

i.e.,

ξ :
x2

D2r2

(bz −D)2−r2

+

(

y−
byp

(bz −D)2−r2

)2

D2r2k2

[(bz −D)2−r2]
2

= 1. (7)

In accordance with (bz−D)2−r2 > 0 shown in (1),

formula (7) is definitely an elliptic equation. That

means contour ξ of projection on the xOy-plane is ac-

tually the ellipse with its center on the y-axis. Thus,

we can derive to the following formula:

D2r2k2

[(bz−D)2−r2]
2

>
D2r2

(bz −D)2−r2
.

This means that the major axis of the ellipse ξ is co-

incident with the y-axis, and also passes through the

coordinate origin. Because the location of the pro-

jected X-ray focus spot is at the coordinate origin,

the projection of the sphere can be concluded to be

an ellipse in the field of the cone-beam X-ray, with

its major axis passing through the projection of the

X-ray focus.

This conclusion can be further expanded. When

two spherical objects are placed in the cone-beam,

two elliptical projections will exist on the projected

plane, and the intersection point of their major axis

must be the projected point of the X-ray focus, as

shown in Fig. 3. These two conclusions are the funda-

mental principles of the measuring method proposed

in this study.

To get the accurate equation of the major axis,

some image and graphic processing methods are nec-

essary. Fig. 4 shows the process of how to fit the ma-

jor axis and the determination of the X-ray focus pro-

jection coordinates. Two elliptical projections of two

spherical objects are captured firstly using a detector,

followed by a series of edge detection, threshold seg-

mentation, contour thinning and tracing to obtain the

contour point coordinates of the ellipses. The least

square fitting is then executed to get the equation

of the major axis of each ellipse. The coordinates of

the intersecting point, namely, the projection of the

X-ray focus, are eventually obtained by solving the

equations of the two major axes.
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Fig. 3. The principle of measuring the focus coordinates based on double-sphere projection.

Fig. 4. The flow process of ellipses major axis

fitting and the determination of the X-ray fo-

cus projection coordinates.

Note that the equation of the major axis is ob-

tained via the method of nonlinear least square fit-

ting. The elliptic equation is [12]

x2 +az2 +bxz+cx+dz+e = 0, (8)

where a, b, c, d and e are the elliptic equation param-

eters. Based on formula (7), the following function

can be derived,

z =
1

2a

[

−bx−d

±
√

(b2−4a)x2 +(2bd−4ac)x−d2−4ae
]

.

By defining the following error function,

Q =

n
∑

i=1

[zi−z(xi,a,b,c,d,e)]2, (9)

where (xi, zi) represents the contour points of the

elliptical projection. And from the non-linear least

square solution of Eq. (8), we can indeed obtain the

values of the parameters of a, b, c, d and e. Thus, the

elliptic geometric parameters can be presented in the

following equations,

xc =
bd−2ac

4a−b2
, zc =

bc−2d

4a−b2
,

tgθ =
a−1−

√

(1−a)2 +b2

b
,

where (xc, zc) is the ellipse center coordinates and

tgθ is the slope of the major axis of ellipse.

The high accuracy of this method has been

demonstrated by results from the computer simula-

tion. However, for the actual CT system, the X-ray

focus is not an ideal point source. Due to the in-

fluences of scatter, dark current and non-uniformity

in pixel response, the DR image edge was observed
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to be blurry and noisy [13–15], thus resulting in in-

creased error of fitting the major axis. We indeed find

that the final results are very sensitive to the error of

fitting the major axis. When two ellipse projections

are used to calculate the projected coordinate origin,

even in the case of a tiny fitting error from either of

the two major axes, a remarkable deviation could be

observed compared with their true values that come

from the coordinates of the intersecting point. From

a practical application point of view, we found that it

is very difficult to get the high reproducibility of cal-

culating results from only two elliptical projections.

To resolve this problem, we further propose an

improved four- step method, as follows.

Step1: A supporting frame with one spherical

object is fixed on the scanning stage. Then the scan-

ning stage is adjusted to a suitable location, and the

distance between the X-ray source and the detector

is adjusted to a suitable value, which can ensure that

the projection of the spherical object is an ideal el-

lipse.

Step2: Move scanning stage along the xd direc-

tion (see Fig. 3) and DR projections are captured.

Step3: By repeating step 2, a series of elliptical

projections of the spherical object along the xd di-

rection at different positions are collected. All of the

projections are composed of one image.

Step4: Follow the process of Fig. 4 until each

major axis equation is obtained. All of the equations

compose one equation set,






















a1x+z = b1

a2x+z = b2

· · · · · · ,namely, Ap = b,

aNx+z = bN

(10)

where

A =













a1 1

a2 1

· · · · · ·

aN 1













, p =

[

x

z

]

, b =













b1

b2

· · ·

bN













.

The solution of the equation set is the final re-

sult we needed. Obviously, Eq. (10) shows that the

number of equations is bigger than the number of

unknown parameters. This means that we have an

over-determined linear equation set. Typically, the

over-determined equation set has no unique solution,

meaning that we can only find the most approximate

solution. The error function is defined as

r = b−Ap.

The solution p∗, allowing ‖r‖
2

2
to reach its mini-

mal value, is the least square solution of the over-

determined equation set. Thus the method to find

the intersecting point of two lines is transferred to

a group of lines, which can effectively guarantee the

high accuracy of the solution.

3 Experimental results

To verify the feasibility and accuracy of the

proposed method, we performed experiments in a

225 kV Micro-CT system. The system is equipped

with a micro-focus X-ray tube, and a Flat panel

detector (PaxScan4030CB) with a image area of

400 mm×300 mm and a pixel size of 0.194 mm. The

spherical object is a steel ball with an outer diameter

of 10 mm, which is fixed on the supporting frame and

projected onto the imaging plane with a good ellipti-

cal shape. The supporting frame is made of plastic so

as to make its projection onto the DR image almost

invisible at a suitable X-ray energy. The intersection

point of all the major axes is the projection of the

X-ray focus. Fig. 5 shows an image composed of six

projections of the steel ball captured along the xd di-

rection with an interval distance of 11 mm. In order

to get ideal elliptical projections, we ajust the detec-

tor close to the X-ray focus, which can enlarge the

cone-beam angle. We also adjusted the steel ball far

from the central X-ray beam and the imaging plane.

The distance between the X-ray focus and the imag-

ing plane was 420 mm, and the distance between the

steel ball and the imaging plane was 340 mm, which

meant that the imaging magnification ratio was 5.25.

Fig. 5. The image composed of elliptical DR

images at different positions.















































1.449x+z = 2141.436

0.903x+z = 1722.373

0.358x+z = 1303.371

−0.185x+z = 884.944

−0.729x+z = 466.107

−1.268x+z = 48.346

. (11)
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Following the process of Fig. 4, every equation of

the ellipse’s major axis was fitted, and that produced

an equation set (11). By solving the equation set us-

ing the MATLAB function, the least square solution

of the over-determined equation set was determined

to be (1026.698, 770.071). The initial value of (λx,λz)

Fig. 6. Reconstructed image when (λx, λz)=

(1026.698, 770.071). (a) Whole CT image; (b)

ROI CT image.

Fig. 7. Reconstructed image when (λx, λz)=

(1022, 777). (a) Whole CT Image; (b) ROI

CT Image.

is (1022, 777) when the 225 kV Micro-CT system

was produced by the manufacturer. We used a dif-

ferent value to reconstruct the central slice of the

object by the FDK algorithm. The reconstructed

whole and Region of Interest (ROI) images when

(λx, λz) are (1026.698, 770.071) and (1022, 777) are

shown in Fig. 6 and Fig. 7, respectively. It is obvious

that the reconstructed image based on the (λx, λz)

value we calculated is of high contrast and has sharp

edges.

4 Summary

We have successfully developed a method to de-

termine the projected coordinate origin with high

accuracy. Through computer simulation, we found

that the errors of (λx, λz) created by this method

were within 1 pixel, which were allowable in a prac-

tical cone-beam CT system. This method is feasible

both practically and theoretically, simply by putting

one spherical object in the cone-beam field and ad-

justing the magnification ratio to ensure an ideal

elliptical projection. In reality, the practical way is

to locate the spherical object far from the central

X-ray beam, and to select a high magnification ratio.

In addition, to make the detector close to the X-ray

focus is also necessary, which can enlarge the cone-

beam angle. The experimental results proved that

this method can improve the reconstructed image

quality effectively (see Fig. 6).
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