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1D theory of laser plasma wake *
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Abstract In this paper, we get the 1D approximate analytical solution of the plasma electrostatic wake

driven by the laser, and get the modified oscillating frequency of this wake. Finally we analyze the longitudinal

beam dynamics in this electrostatic wake, and find that the high order terms don’t change the topology of the

longitudinal phase space.
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Laser plasma wakefield accelerators (LWFA), in

which the plasma wakefield is excited by an intense

laser to accelerate the particles, have demonstrated

accelerating gradient of hundreds of GV/m, and have

become the highlight of advanced accelerator concept.

In this paper, we get the 1D analytical solution of the

plasma electrostatic wake driven by the laser, and get

the modified oscillating frequency of this wake. Fi-

nally we analyze the longitudinal beam dynamics in

this electrostatic wake, and find that the high order

terms don’t change the topology of the longitudinal

phase space.

We consider the homogeneous unmagnetized

plasma. Laser travels in the z direction with the ini-

tial frequency ω0 �ωp, ωp is the electron plasma fre-

quency, and the group and the phase speed vg ≈ vp ≈ c

(c is the light velocity). We adopt one dimensional

theory, the LWFA system is governed by the following

set of equations[1]:
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Here, ~E, ~B are the electromagnetic fields, and ~v is

the electron velocity. We introduce the coordinates

ζ = kp(z − ct) (kp = ωp/c), and normalized scalar

and vector potentials, φ(ζ) and a(ζ), such that E|| =

−
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e
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, E⊥ =
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e
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, where ⊥ and || refer to the

components perpendicular and parallel to
_
z . From

the above equations, we can get the equations of φ(ζ)

and a(ζ),
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where kp = 2π/λp is the electron plasma wave num-

ber, and γ is the relativistic factor of electron. From

the Hamiltonian of the electron and the continuity

equation, one can get the following relation
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Finally, we get the 1D self-consistent equations for

LWFA system
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In this paper, we assume that a is unchanged and

φ is in the vicinity of zero (small variable) φ ∝ ε to
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get the analytical solution of the electrostatic plasma

wake. We expand Eq. (9) into the form

φ′′ +φ−
3
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ε2a2(1−2φ+3φ2−4φ3 +5φ4 + · · · ). (10)

Using KBM method[2], one expands φ as the following

φ = ucosθ+

N
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The equations of u and θ are
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From Eq. (10), we remove the secular terms to obtain

the first order solution
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and also the second order solution
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So the solution of the electrostatic plasma wake po-

tential to second order is
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where θ = kp

(
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)

(z − ct). In (18), if we

reserve the zero order term only, then θ = kp(z−ct),

the wake oscillating frequency is the usual electron

plasma frequency ωp. But the wake oscillating fre-

quency is modified as (19), if we include the high

order terms, ω′
p is related to the oscillating amplitude

ω′
p = ωp

(

1+a2−
9u2

32

)

. (19)

Now, we begin to analyze the longitudinal beam

dynamics in the electrostatic potential φ. In do-

ing so, the expression of θ should be expressed as

θ = kp

(
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)

(z−vpt), vp < c. We incorporate

the new variable s = kpz, the longitudinal equations

of motion are
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where βp = vp/c, β = (1− γ−2)
1

2 . The function φ is

shown in the Fig. 1.

Fig. 1. The function φ.

The fixed points of the longitudinal equations of

motion are γ = γp, θ = nπ (n is integer). The Jacobian

matrix of (20), (21) is
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So the characteristic value λ satisfies λ2 =
1
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p
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.

It is obvious that θ = 0 is the stable point and

θ = π,−π are the saddle points. If we remove the sec-

ond and third terms in (18), we will get the same con-

clusion. So the high order terms in the electrostatic

potential don’t change the topology of the longitudi-

nal phase space. Fig. 2 gives the longitudinal phase

space near the zero phase, when u = 0.5, βp = 0.98.

Fig. 2. Longitudinal phase space near θ = 0.
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