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Solution to the eigenstates of pairing

Hamiltonian in finite nuclei
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Abstract We apply the algebraic Bethe technique to the nuclear pairing problem with certain limits. We

obtain the exact energies and eigenstates, and find the symmetry between the states corresponding to less and

more than half full shell. We also proved that the problem of solving BAE can be transformed into the problem

of finding the roots of a hypergeometric polynomial, which is much simpler.
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1 Introduction

Pairing is known to play an important role in the

quantum many-body problems. In particular, pairing

force is a key ingredient of the residual interaction be-

tween nucleons in a nucleus. An algebraic approach

to pairing was given by Richardson some time ago[1].

Richardson’s formalism was rather complex and was

not widely used in nuclear physics. For a limited

class of seniority-conserving pairing interactions, the

quasispin formalism of Kerman[2] was used to treat

a large number of cases. In this article, we wish to

explore an approach related to Richardson’s formal-

ism which can be reduced to the quasispin formalism

in the appropriate limit. In the nuclear shell model,

the nucleus is pictured as a system of fermions mov-

ing in a central field with well defined single particle

energy levels εj , arising from spin-orbit interactions.

We consider nucleons at time-reversed states| jm〉 and

(−)j−m | J −m〉, interacting with a pairing force and

when the pairing strength is separable cjj′ = c∗j cj′ , the

Hamiltonian takes the form described by the Hamil-

tonian

Ĥ =
∑

jm

εja
+
jmajm−|G|

∑

jj′

c∗jcj′ Ŝ
+
j Ŝ−

j′ , (1)

here, a+
jm and ajm are the creation and annihilation

operators for nucleons in level j, Ŝ+
j and Ŝ−

j′ are the

quasispin operators, they create or destroy a single

pair of nucleons in the time reversed states on level

j. If we also define

Ŝ0
j = 1/2

∑

m>0

(a+
jmajm +a+

j−maj−m−1), (2)

then, we have a set of orthogonal SU(2) algebras

[Ŝ+
j , Ŝ−

j′ ] = 2δjj′ Ŝ
0
j , [Ŝ0

j , Ŝ±
j′ ] =±δjj′ Ŝ

±
j . (3)

Now, we define

Ŝ+(0) =
∑

j

c∗j Ŝ
+
j and Ŝ−(0) =

∑

j

cj Ŝ
−
j , (4)

furthermore, if we assume that the energy levels are

degenerate, the first term in Eq. (1) is a constant for

a given number of pairs because the Hamiltonian is

number conserving. Ignoring this term, we obtain

Ĥ =−|G|Ŝ+(0)Ŝ−(0). (5)

Physically, the operator Ŝ+(0) creates a single

fermion pair and c∗j can be viewed as the probabil-

ity amplitude that this pair is created at level j. This

interpretation implies, however, that these constants

are normalized:
∑

j

|cj |
2 = 1 . (6)

Note that a state with no pairs, here denoted by |0〉,

is the lowest weight state for all the SU(2) algebras

corresponding to different levels. In other words, it
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obeys

Ŝ−
j | 0〉= 0 and Ŝ0

j | 0〉=−Ωj/2 | 0〉 for every j, (7)

therefore, this state is annihilated by the Hamiltonian

in Eq. (5)

Ĥ | 0〉= 0 . (8)

The state which represents the full shell, denoted by

| 0̄〉 in this paper, is the highest weight state of all

SU(2) algebras corresponding to different levels. It

obeys

Ŝ+
j | 0̄〉= 0 and Ŝ0

j | 0̄〉= Ωj/2 | 0̄〉 for every j, (9)

the state | 0̄〉 is also an eigenstate of the Hamiltonian

Ĥ | 0̄〉= E1 | 0̄〉 , (10)

its energy is given by

E1 =−|G|
∑

j

Ωj |cj |
2 . (11)

2 Eigenstates and eigenvalues of the

nuclear pairing Hamiltonian

We begin by introducing the operators

Ŝ+(x) =
∑

j

c∗j
1−|cj |2x

Ŝ+(0), (12)

Ŝ−(x) =
∑

j

cj

1−|cj |2x
Ŝ−(0), (13)

K̂0(x) =
∑

j

1

1/|cj|2−x
Ŝ0

j , (14)

and we obtain

[Ŝ+(x), Ŝ−(0)] = [Ŝ+(0), Ŝ−(x)] = 2K̂0(x), (15)

[K̂0(x), Ŝ±(y)] =±
Ŝ±(x)− Ŝ±(y)

x−y
. (16)

The states |0〉 and | 0̄〉, are eigenstates of K̂0(x):

K̂0(x) | 0〉=−

(

∑

j

Ωj/2

1/|cj|2−x

)

| 0〉, (17)

K̂0(x) | 0̄〉=

(

∑

j

Ωj/2

1/|cj |2−x

)

| 0̄〉. (18)

Let us first form a Bethe ansatz state as follows:

Ŝ+(x(1)) | 0〉, (19)

we denoted our variable by (x(1)) in order to empha-

size that this state has one pair of nucleons. Using the

form of the Hamiltonian given in Eq. (5), we can show

that the Hamiltonian acting on this state gives[3]

ĤŜ+(x(1)) | 0〉=−2|G|

(

∑

j

Ωj/2

1/|cj |2−x(1)

)

Ŝ+(0) | 0〉

(20)

alternatively, we can choose (x(1)) as a solution of

−
∑

j

Ωj/2

1/|cj|2−x(1)
= 0 , (21)

then

ĤŜ+(x(1)) | 0〉= 0 , (22)

here Eq. (21) is our one-pair Bethe ansatz equation

because it determines the value of (x(1)).

Now, we can calculate eigenstates with more than

one pair of nucleons. Using the form of the Hamilto-

nian given in Eq. (5), it is possible to show that the

state

Ŝ+(0)Ŝ+(z
(N)
1 ) . . . Ŝ+(z

(N)
N−1) | 0〉 (23)

is an eigenstate of the Hamiltonian if the parameters

(z(N)
k ) obey the following Bethe ansatz equations

−
∑

j

Ωj/2

1/|cj |2−z(N)
m

=
1

z(N)
m

+

N−1
∑

k=1(k 6=m)

1

z(N)
m −z(N)

k

,

(24)

here, m = 1,2, · · · ,N , and we assuming 2 6 N 6

Nmax/2. then we can obtain the energy

EN =−|G|

(

∑

j

Ωj |cj |
2−

N−1
∑

k=1

2

z(N)
k

)

. (25)

If the shell is more than half full, we choose to work

with hole pairs instead of particle pairs. Therefore

the state (23) represents a shell which is at most half

full. Here, we would like to emphasize that the BAE’s

(24) are a set of N−1 coupled equations in N−1 vari-

ables. The parameters z(N)
m are all different from one

another and they are also different from zero. Using

the same parameters that appear in Eq. (23), we now

form the state

Ŝ−(z(N)
1 )Ŝ−(z(N)

2 ) . . . Ŝ−(z(N)
N−1) | 0̄〉. (26)

We can show that the states (23) and (26) have the

same energy in Eq. (25) which is given in terms of the

variables . In principle, Eq. (24) may have more than

one solution in which case each solution gives us two

eigenstates. One should substitute each solution in

the states (23) and (26) in order to find correspond-

ing eigenstates and then in Eq. (25) in order to find

their energy. We summarize our results in Table 1.
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Table 1. Summary of the energy eigenvalues and the eigenstates of the pairing Hamiltonian. Here, Nmax

denotes the maximum number of pairs which can occupy the shell and 2 6 N 6Nmax/2.

pairs state energy/(− |G |)

1 Ŝ+(x(1)) | 0〉 0
1 Ŝ+(0) | 0〉

∑

j Ωj | cj |2

N Ŝ+(x
(N)
1 )Ŝ+(x

(N)
2 ) · · · Ŝ+(x

(N)
N

) | 0〉 0

N Ŝ+(0)Ŝ+(z
(N)
1 ) · · · Ŝ+(z

(N)
N−1) | 0〉

∑

j Ωj |cj |2−
∑N−1

k=1

2

z
(N)
k

Nmax +1−N Ŝ−(z
(N)
1 )Ŝ−(z

(N)
2 ) · · ·Ŝ−(z

(N)
N−1) | 0̄〉

∑

j Ωj |cj |2−
∑N−1

k=1

2

z
(N)
k

Nmax | 0̄〉
∑

j Ωj |cj |2

3 Exact solution for BAE

Here, we consider the Bethe ansatz equations

which are to be solved in order to find the states an-

nihilated by the pairing Hamiltonian for two levels

and for arbitrary values of the occupation probabili-

ties |cj1 |
2 and |cj2 |

2 . We give analytical solutions of

these equations in the form of the roots of some hy-

pergeometric polynomials. The method we use here

is adopted from Ref. [3]. When there are only two

levels, Eq. (21) can be written as

−Ωj1/2

1/|cj1 |
2−x(N)

i

+
−Ωj2/2

1/|cj2 |
2−x(N)

i

=

N
∑

k=1(k 6=i)

1

x(N)
i −x(N)

k

,

(27)

for i = 1,2, · · · ,N . These equations are to be satisfied

for every x(N)
i , so that we have a system of N cou-

pled nonlinear equations. Let us begin by introducing

the variables η(N)
i , which are related to x(N)

i with the

linear transformation

x(N)
i =

1

|cj2 |
2
+η(N)

i

(

1

|cj1 |
2
−

1

|cj2 |
2

)

, (28)

we assumed that |cj1 |
2 6= |cj2 |

2. When we write the

BAE (27) in terms of the new variables introduced in

Eq. (28), we find

N
∑

k=1(k 6=i)

1

η(N)
i −η(N)

k

−
Ωj2/2

η(N)
i

+
Ωj1/2

1−η(N)
i

= 0 , (29)

for i = 1,2, · · · ,N . This way, the dependence of the

BAE on the occupation probabilities |cj1 |
2 and |cj2 |

2

disappears.

In Ref. [4], Stieltjes had shown that the N th order

polynomial

pN (z)=
N
∏

i=1

(z−η(N)
i ) , (30)

whose roots obey Eq. (29), satisfies the hypergeomet-

ric differential equation

z(1−z)p′′
N(z)+[−Ωj2 +(Ωj2 +Ωj1)z]p′

N(z)+

N(N −Ωj2 −Ωj1 −1)pN(z) = 0 . (31)

We assume the polynomial solution of Eq. (31) is the

following hypergeometric function Ref. [5]:

pN(z) = F (−N,N −Ωj2 −Ωj1 −1;z) =
N

∑

k=0

(−N)k(N −Ωj2 −Ωj1 −1)k

(−Ωj2)k(k!)
zk . (32)

This procedure reduces the problem of solving the

BAE’s (27) for N pairs to a problem of finding the

roots of an order N th hypergeometric polynomial.

Once the roots of the polynomial (31) are found, then

Eq. (28) can be used to find the variables x(N)
i , then

we can find the corresponding eigenstates and energy.

4 Summary and concluding remarks

In this paper, we showed that the Bethe ansatz

technique can be applied to the nuclear pairing

Hamiltonian with separable pairing strengths and de-

generate single particle energy levels in a purely al-

gebraic fashion. This algebraic method reveals sym-

metry between the energy eigenstates corresponding

to at most half full shell and those corresponding to

more than half full shell. Using this symmetry, we are

now able to complete the pairing spectra obtained by

Pan et al Ref. [6] for the first nuclear sd shell.We also

provide a technique to solve the equations of Bethe

ansatz, which is using hypergeometric polynomial.
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