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Abstract Deformation constrained relativistic mean-field (RMF) approach with fixed configuration and time-

odd component has been developed and applied to investigate magnetic moments of light nuclei near doubly-

closed shells. Taking 17O as an example, the results and discussion are given in detail.
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1 Introduction

During the last two decades, the relativistic mean

field (RMF) theory has achieved lots of success[1—4]

in describing not only stable nuclei, but also exotic

nuclei[5, 6] and supernova as well as neutron stars[7].

In odd-A or odd-odd nuclei, however, the dirac

current due to the unpaired valence nucleon will lead

to the time-odd component of vector fields, i.e., the

nuclear magnetic potential and the wave functions of

nuclei are no longer time reversal invariant. In other

words, the time-odd fields will give rise to the core

polarization which will modify the nuclear current,

single-particle spin, and angular momentum, and de-

scribe appropriately the magnetic moments. In fact,

the time-odd fields are essential in describing the

magnetic moments[8—10], and rotating nuclei[11, 12],

etc. With the time-odd nuclear magnetic potential

in RMF theory, the magnetic moments in LS closed-

shell nuclei plus or minus one nucleon have been re-

produced well[8—10].

In order to find the ground state of deformed nu-

cleus in mean field calculation, it is crucial to ob-

tain the potential energy surface(PES) as a function

of deformation. There are two different ways to ob-

tain the PES, i.e., adiabatic and configuration-fixed

(diabatic) constrained approaches. On the energy

surfaces obtained from adiabatic constrained calcu-

lations, there are some irregularities, and some local

minima are too obscure to be recognized. In com-

parison, the configuration-fixed constrained calcula-

tion avoid these irregularities, thus yielding a con-

tinuous and smooth energy surface curve for each

configuration[13, 14].

In Ref. [13], the configuration-fixed constrained

RMF approach has been developed. Although

the time-odd triaxial RMF approach has been

developed[10], but the computation is too expensive

for global study of nuclear properties. Here the de-

formation constrained RMF approach with fixed con-

figuration and time-odd component is applied to the

investigate the magnetic moments of light nuclei near

doubly-closed shells.
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2 Theoretical framework

The starting point of the RMF theory is the stan-

dard effective lagrangian density constructed with the

degrees of freedom associated with the nucleon field

ψ, two isoscalar meson fields σ and ω, the isovector

meson field ρ and the photon field A[1—4]:

L = ψ
[
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From the classical variation principle, the equation of

motion for nucleon can be obtained as:
{

α·[−i∇−V (r)]+V0(r)+β[M+S(r)]
}

ψi(r) = εiψi(r).

(2)

The attractive scalar potential and the repulsive time-

like vector potential are respectively S(r) = gσσ(r)

and V0(r) = gωω(r) + gρτ3ρ(r) + e
1−τ3

2
A(r). The

time-odd nuclear magnetic potential: V (r) = gωω(r)

is due to the spatial component of the vector fields

and it will break the time-reversal invariance. Com-

pared with ω(r) field, ρ(r) and A(r) fields turned

out to be small in V (r), so they were often neglected

for light nuclei [8].

The self-consistent symmetries imposed are axial

symmetry and parity. Thus, only azimuthal current

jϕ(z,r⊥) on circular lines around the symmetry axis is

non-zero [8]. In particular, the space-like component

of ω meson is determined by

{−∆+m2
ω}ωϕ(r) =

∑

i

ψ̄iγϕψi , (3)

where the summation is taken over the particle states

only, i.e., no-sea approximation. In odd-A nuclei, the

source term in Eq. (3) is due to the unpaired nucleon,

which breaks time-reversal invariance and gives rise

to core polarization effect.

The potential energy surface is obtained through

the constrained calculation in which the binding en-

ergy at certain deformation is obtained by constrain-

ing the quadrupole moment 〈Q̂〉 to a given value µ[15],

i.e.,

〈H ′〉= 〈H〉+
1

2
C(〈Q̂〉−µ)2 . (4)

We use both adiabatic and configuration-fixed con-

strained calculation. “Adiabatic” means that the nu-

cleons always occupy the lowest single particle levels

during the constraint process, while “configuration-

fixed” means that the nucleons must occupy the same

combination of the single particle levels during the

constraint process. This is required by the following

equation:

〈ψi(q)|ψj(q+∆q)〉≈ 1 , (5)

where i and j run over all the single-particle states

of two adjacent configurations and q is corresponding

deformation parameter.

3 Results and discussion

The single-nucleon Dirac spinor has the form

ψi(r,s, t) =





fi(r,s)

igi(r,s)



χti(t) . (6)

The single-nucleon Dirac spinor and meson fields are

solved by expanding in terms of harmonic oscillator

basis with major shells chosen as Nf = Nb = 14 for

the nucleons and mesons respectively[4, 16]. In odd-A

nuclei, as the time reversal invariance is broken by

the unpaired valence neutron, Eq. (6) can be written

as the linear combination of time reversal conjugate

basis:

f(r,s) =
∑

α

fα|α〉+
∑

ᾱ

fᾱ|ᾱ〉, (7)

g(r,s) =
∑

α̃

gα̃|α̃〉+
∑

˜̄α

g ˜̄α| ˜̄α〉, (8)

and the dirac equation for the nucleons should be

solved separately in two subspaces, which are related

by time-reversal operator[10]

(
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−Bβ′α Cβ̃′α̃

)(

fα

gα̃

)

= εi

(

fα′

gβ̃′

)

(9)

and
(

Aᾱ′ᾱ Bᾱ′ ˜̄α

−B ˜̄β′ᾱ
C ˜̄β′ ˜̄α

)(

fᾱ

g ˜̄α

)

= ε̄i

(

fᾱ′

g ˜̄β′

)

. (10)

The oscillator lengths parameters are bz = b⊥ =
√

~/Mω0, where M is the nucleon mass. The os-

cillator frequency is given by ~ω0 = 41A−1/3. The

parameter set PK1[17] is adopted.

The magnetic moments for light nuclei near

doubly-closed shells with A = 15, 17, 39, and 41 are

given in Table 1. Both PK1 and NL1[8] give the rea-

sonable values compared with the data. The mag-

netic moment calculated by two parament sets are

close to each other because two effective interaction

have a small marginal effect on the single particle



100 Chinese Physics C (HEP & NP) Vol. 33

wavefunction and configurations. It indicates that

nuclear magnetic moments are not parameter sets de-

pendent.

Table 1. Magnetic moments (µ) of light nuclei

near closed shells in units of µN . The results

of NL1 are taken from Ref. [8] and the data is

taken from Ref. [18].

µ
15O 17O 39Ca 41Ca 15N 17F 41Sc

Exp. 0.72 −1.89 1.02 −1.60 −0.28 4.72 5.43

PK1 0.65 −2.01 1.01 −2.15 −0.22 4.95 6.14

NL1 0.65 −2.03 0.96 −2.13 −0.29 4.99 6.07

The energy surface for 17O in configuration-fixed

constrained calculation is presented with solid lines in

Fig. 1, where the minima of each configuration are in-

dicated by stars labeled by letters of the alphabet. It

is shown obviously that state A has the lowest energy

with a prolate deformation β= 0.08 and B is the sec-

ond minima with oblate deformation β=−0.07. The

energy difference between A and B is only 0.05 MeV.

Moreover, it is noticed that the contribution of time-

odd component to the binding energy of g.s. is about

0.2 MeV as found in Ref. [19]. The magnetic moment

as function of quadrupole deformation is also plotted

in Fig. 1 and for a fixed configuration, the magnetic

moment is continuously variational. The main com-

ponent of valence neutron wavefunction is 1d5/2 for

both state A and B. For state A, the parity and the

third component of valence neutron spin is 1/2
+

and

corresponding magnetic moment is −0.51 µN . For

state B, it is 5/2
+

and corresponding magnetic mo-

ment is −2.01 µN . This value is well closed to the

data 5/2
+

and −1.89 µN
[18].

Fig. 1. Potential energy surfaces and mag-

netic moment in adiabatic(open circles) and

configuration-fixed(solid lines) constrained de-

formed RMF calculation with time-odd com-

ponent and PK1 parameter for 17O. The min-

ima in the energy surfaces for fixed configura-

tion are represented as stars and labeled re-

spectively as A and B.

4 Summary and concluding remarks

The deformation constrained RMF approach with

fixed configuration and time-odd component has been

developed and applied to the investigation of the mag-

netic moment of light nuclei near doubly-closed shells.

The nuclear magnetic moments are in good agreement

with the data in light nuclei near doubly-closed shells.

Taking 17O as an example, the results and discussion

are given in detail.
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