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Imaging source with Gaussian proper time distribution *
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Abstract Making use of the maximum entropy method, we study the most probable source function in heavy

ion collisions. An anisotropic Gaussian source is deduced by simply assuming that the particles are emitted

within a finite proper-time. The general relations between the most probable source function and the minimal

assumptions are discussed, which are instructive in constructing a self-consistent source function from observed

Hanbury-Brown/Twiss(HBT) correlations.
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1 Introduction

A new form of matter — the quark gluon plasma

(QGP) is expected to be formed at sufficient high

energy density in relativistic heavy ion collisions.

The exact estimation of energy density in heavy ion

collisions requires the space-time information of the

source. The quantum correlations between identi-

cal particles, or Hanbury-Brown/Twiss(HBT) corre-

lations, are the only known way which can provide us

with this important information[1—3].

The produced identical Bose-particle in relativis-

tic heavy ion collisions, i.e., the most identical π

mesons, have known quantum correlations in momen-

tum space[4, 5]. Such correlations are experimentally

measurable. Via the correlations of two identical par-

ticles, the emission function can be in principle deter-

mined by the relation[6—9],
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where, q = p1 − p2, K =
1

2
(p1 +p2). C (q,K) is

the correlation function of two identical particles.

S (x,K) is the emission source function, which de-

scribes the probability of emitting a particle with

four-momentum p at space-time point x.

However, the particles of final state are on mass-

shell Ei =
√

m2 +p2
i , or, K · q = 0, so that the

time component of the four-momentum, q0, can be

expressed as q0 = β⊥qo + βlql with β⊥ =
K⊥

|K0| ,

βl =
Kl

|K0| , where ql, qo, qs denote the components

in space directions parallel to the beam (“longitu-

dinal” or z-direction) and to the transverse com-

ponents K⊥ of K (“out” or x-direction), and in

the remaining third Cartesian direction (“side” or y-

direction), respectively[10, 11]. Only three-momentum

components in four-momentum space are indepen-

dent. While in coordinate space, four-dimensional

space-time components must be independent of each

other. The imaging space-time source cannot be

uniquely determined by the inversion of the Fourier

transform. To get the source function, a prior as-

sumption is usually made.

Three typical methods are frequently used in con-

structing the source function in the market: (1) Sup-

pose that the source function is Gaussian distribu-

tion with azimuthal symmetry. This is because the

measured two-particle correlation function C (q,K) is

usually well parameterized by a Gaussian function[12]:

C (q,K) = 1+exp(−R2
sq

2
s −R2

oq
2
o −R2

l q
2
l −2R2

olqoql) .

(2)

From this measured correlation, the four model-

independent constrains on source function can be
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deduced[13]:



































R2
o =

〈

(x−β⊥t)
2
〉

−〈x−β⊥t〉2 =
〈

(

x̃−β⊥t̃
)2
〉

;

R2
s = 〈y2〉−〈y〉2 = 〈ỹ2〉 ;

R2
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2
〉

−〈z−βlt〉2 =
〈

(

z̃−βlt̃
)2
〉

;

R2
ol =

〈(

x̃−β⊥t̃
)(
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)〉

;

(3)

where x̃µ = xµ−〈xµ〉. However, in the case, there are

still 7 un-determined parameters in 4×4 matrix of cor-

responding Gaussian distribution in four-dimensional

space-time. In order to fully determine the source

function, further assumptions that the matrix ele-

ments of Bµv satisfy Bxx = Byy and Bxt = Bxz = 0[14]

have to be made. This means that the source func-

tion is isotropic in transverse-plane, and the corre-

lations between transverse-space and time, and be-

tween transverse and longitudinal directions are neg-

ligible.

Alternatively, it is supposed that the source func-

tion is the product of three independent parts[15, 16],

i.e., S(x,y,z, t) = I(x,y)G(η)H(τ), where H(τ) =
1

N

dn

dτ
is the given distribution of the proper time at

the frozen-out. I(x,y) and G(η) are the parameter-

ized distributions in transverse-space and in pseudo-

rapidity, respectively. (3) In addition, the source

function can also be deduced from the hydrodynami-

cal model[17, 18]. While such an obtained source func-

tion strongly depends on the hydrodynamical model

and its boundary conditions, it makes the hydrody-

namical model fail to describe the observed momen-

tum correlations of two identical particles.

We see from those methods that in order to de-

termine the source function, the assumptions for the

type of source function are made subjectively in ad-

vance. In this paper, we try to determine the source

function in a conversed way, i.e., starting from the ob-

served correlation in momentum space, then adding

the least assumptions to construct the source func-

tion, making use of the well-known maximum entropy

method (MEM).

2 Application of the maximum en-

tropy method

The information entropy of a random distribution

is generally defined as[19],

σ =−
∫
p(x) lnp(x) d4x , (4)

where p(x) is normalized, i.e.,

∫
p(x)dx = 1. It de-

scribes the degree of the uncertainty of the system.

The larger the information entropy, the more uncer-

tain the observed system is.

The maximum entropy method is to choose the

most probable distribution from all possible ones un-

der known constraint conditions. Such an obtained

distribution is a completely random one, which makes

entropy maximum under given constraints. There are

the least bias for the unknown part of the problem.

Even if the known constraint conditions alone are

not sufficient for uniquely determining the distribu-

tion, like in the case we are concerned with, we can

still add the least and basic constraint conditions to

the unknown part and then deduce the distribution

by MEM.

Generally, the constrained conditions are ex-

pressed as the average of multiple functions gi(x)(i =

1, · · · ,m),

〈gi(x)〉= Ci (K) , i = 1, · · · ,m . (5)

where Ci is the known constants. The most probable

distribution which makes the maximum entropy un-

der the constraints can be deduced by the method of

Lagrangian multipliers, i.e., from the extremum con-

dition of the function,

σ+λ0Norm+

m
∑

i=1

λi〈gi(x)〉=

∫[
−p(x) lnp(x)+λ0p(x)+

m
∑

i=1

λip(x)gi(x)

]

dx , (6)

we can get,

p(x) = exp

[

−λ0−
m
∑

i=1

λigi(x)

]

, (7)

where λ0 and λi are determined by the normalization

of p(x) and constrain conditions Eq. (5).

The MEM has many applications in heavy ion col-

lisions. As we know, people use the MEM to research

the distributions of the charge multiplicity[20]. Corre-

sponding to the HBT correlations in relativistic heavy

ion collisions, we are interested in determining the

space-time distribution of source function SK(x). Its

corresponding information entropy is[21],

σK =−
∫
S(x,K) lnS(x,K) d4x . (8)

The model-independent and experimentally measur-

able constraint conditions are given in Eq. (3). They

are all the bilinear functions of x̃(x̃ = x−〈x〉) and can

be written as,

gi(x̃) = x̃µgµν
i x̃ν , i = 1, · · · ,4 . (9)
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If we only take these constraints to construct the

source function by MEM, the source function should

also be a Gaussian distribution[21],

S(x,K) = e−λ(K) exp

(

−
N
∑

i=1

λi(K)x̃µgµν
i x̃ν

)

=

e−λ(K) exp

(

−1

2
x̃µBµν(K)x̃ν

)

, (10)

where Bµν = 2

N
∑

i=1

λig
µν
i , x̃µ = (x̃, ỹ, z̃, t̃) and eλ =

√
detB

4π
2

. Bµv behaves like the weight matrix and

B−1
µv = 〈xµxv〉−〈xµ〉〈xv〉. The Lagrangian multipliers

λi(K) is determined by inserting the matrix elements

of B−1
µv into constraint conditions, Eq. (3),

Bµv =
1

∆
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

, (11)

where ∆ = R2
oR

2
l−(R2

ol)
2. But the determinant of this

matrix is zero. This means that the obtained four-

dimensional space-time source function in fact does

not depend on four independent variables, due to the

above-mentioned mass-shell constraint in momentum

space. So purely based on experimentally measured

constraints, it is impossible to get a well-defined four-

dimensional space-time source distribution. In order

to get a four-dimensional source function, we have to

assume at least one more constraint, in addition to

the model-independent ones, Eq. (3).

3 Imaging source function with Gaus-

sian proper time distribution

In model-independent constraints, Eq. (3), only

three-spacial components of the momentum are inde-

pendent. The time-component q0 is not an indepen-

dent variable. Therefore, the time-component of the

source function cannot be independently determined.

We know that the particles will freeze out from the

source after a time period of the collisions, and the

source has a finite lifetime. A good description for the

time evolution of source is the proper time, which is

the time in the rest frame of the moving source. It is

independent of the observed reference and defined by

time-space coordinate in any reference as,

τ 2 = t2−x2−y2−z2 . (12)

In history, a number of models have tried to give the

distribution of proper time.

In 1983, Bjorken proposed the distribution of

proper time as[22],

H(τ) = δ(τ −τ0) , (13)

which means that all particles are hadronized simul-

taneously at the proper time τ0. This is obviously a

simple approximation. The particles should freeze-

out within a proper-time range. So people further

assumed various possible and simple distributions for

proper time, such as[23]

H(τ) =
1

(τ −τ0)2 +σ2
τ

, (14)

and

H(τ) = τ−3/2 exp(−β/τ) . (15)

These two kinds of distributions both satisfy the nor-

malization condition. They reach their extremum at

τ = τ0 and τ =
2

3
β, respectively. The distribution

goes down sharply nearby the extremum. The effec-

tive range of proper time can be estimated by the

width of its distribution, i.e., 〈τ̃ 2〉, However, they are

both divergence, which means that the particles can

be frozen out from the source endlessly. This is obvi-

ously impossible in practice.

In order to constrain the source to a finite life-

time, we simply assume that H(τ) has a Gaussian

distribution with finite width στ ,

〈τ̃ 2〉= σ2
τ . (16)

The definition of proper time in infinite longitudinal

moment coordinate, Eq. (12), can be approximately

written as,

τ 2 = t2−z2 . (17)

In the case, the additional constraint can be taken as,

〈τ̃ 2〉=
〈

t̃2
〉

−〈z̃2〉 . (18)
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Then the source function with Gaussian proper time

distribution can be deduced by the maximum entropy

method,

S(x,K) =
1

4π
2RsT

√
∆

exp

[

− ỹ2

2R2
s

−R2
l (x̃−β⊥t̃)2+R2

o
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2

2∆
−R2

ol(x̃−β⊥t̃)(z̃−βlt̃)

∆
−1

2

β2
l z̃2 +2βlz̃t̃+ t̃2

R2
l +σ2

τ −σ2
τβ2

l

]

, (19)

where the weight matrix of Gaussian function B is
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with

∆1 =
−βl∆

R2
l +σ2

τ −σ2
τβ2

l

+R2
olβ⊥−R2

oβl

and

∆2 =
∆

R2
l +σ2

τ −σ2
τβ2

l

+R2
oβ

2
l −2R2

olβlβ⊥ +R2
l β

2
⊥

.

This matrix has a non-zero determinant which means

the source function is well-defined.

From this matrix, we can see the following impor-

tant properties of the source function: (1) The dif-

ferent diagonal elements in transverse plane, Byy and

Bxx, show that the Gaussian source is anisotropy in

transverse plane. (2) The non-zero non-diagonal el-

ements of Bxz, Bxt and Bzt indicate that there are

correlations in x ∼ z, x ∼ t and z ∼ t for Gaussian

proper time distribution, but no correlation in x∼ y

and y∼ t. (3) The lifetime of the source function is

〈

t̃2
〉

=
σ2

τ

β2
⊥

+
R2

l (1+β2
l )

β4
⊥

, (21)

which is related to the finite width of proper-time dis-

tribution as known, and also related to longitudinal

radii and momentum in both transverse and longitu-

dinal directions.

Comparing matrix elements in Eq. (11) and

Eq. (20), we can find that additional constraints,

Eq. (16) and Eq. (18), only change the elements, Bzz,

Btt, and Bzt in Eq. (11). The additional constraint re-

lated variables change, while the unrelated ones keep

unchanged. This is because the MEM determines the

source function only according to the given constraint

relation.

If the proper-time is exactly given by Eq. (12)

and the additional constraint for Gaussian proper-

time distribution turns to

〈τ̃ 2〉=
〈

t̃2
〉

−〈x̃2〉−〈ỹ2〉−〈z̃2〉 . (22)

All elements of B in Eq. (11) will be changed and not

be zero. The appearance of Bxy and Byt is due to

the small transferring of transverse momentum. So

they should be smaller than Bxz, Bxt and Bzt. From

these discussions, we see clearly and directly how the

additional constraint controls the source function by

the MEM.

This is instructive in reconstructing the source

function which well describes the observed data. The

newly measured correlations show a non-Gaussian

tail[24]. These make model-independent constraints

no longer covariance like. By MEM, a non-Gaussian

source function should be expected.

4 Conclusions

Making use of the maximum entropy method, we

study the most probable source function in relativis-

tic heavy ion collisions. This is the opposide of the

conventional way. An anisotropic Gaussian source is

deduced by simply assuming that the particles are

emitted within a finite proper time. In principle, all

kinds of correlations can appear in source function.

But the correlations between two directions in trans-

verse plane are smaller than those between transverse

and longitudinal directions, and between transverse

(or longitudinal) direction and time. The relations

between the most probable source function and the

minimal assumptions are discussed, which is instruc-

tive in reconstructing a self-consistent source function

from the observed HBT correlations.
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