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Meson spectra governed by the Fermi-Breit potential *
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Abstract We calculate the meson mass spectra in a quark potential model by using the complete Fermi-Breit

potential including the terms of orbit-orbit interaction, spin-orbit coupling, and tensor force interaction. We

find that these terms give nontrivial contributions to the calculated meson spectra. The orbit-orbit coupling

term may lead to an instability of the solution of the Schrödinger equation and should be regularized.
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1 Introduction

In the description of low-energy hadronic phenom-

ena simplifications arise due to the effect of spon-

taneous chiral symmetry breaking which generates

non-perturbatively constituent quark masses of a few

hundred MeV[1], even though the current quark mass

in quantum chromodynamics is of the order of only

a few MeV. Once the generation of the constituent

quark mass is taken into account, the other non-

perturbative effects such as confinement and gluon

exchanges can be treated as a relatively weak in-

teraction if one investigates low-energy phenomena.

On the basis of relatively large constituent quark

masses and a physically inspired phenomenological

potential, non-relativistic and relativity-corrected po-

tential quark models have been successfully applied

to describe many properties of low-lying hadronic

states[2—12]. Progress has been made in studying the

hadron bound states and the fine structure of the

mass spectra[1—7]. The success of the non-relativistic

potential model also promotes its application to scat-

tering problems[2, 7—10, 13—15].

In a non-relativistic model for a quark-antiquark

state on which we focus our attention, the potential

consists of two main parts. The confining part of

the potential has been traditionally included by a

linearly-rising potential with a string tension coeffi-

cient b. The other part is described by a one-gluon ex-

change potential, whose coupling constant αs is taken

phenomenologically as a parameter to describe the

meson spectra. The earliest version of a complete

non-relativistic one-gluon exchange potential up to

the second order in the relative velocity v is the Fermi-

Breit potential (or just the Breit potential)[16].

In the studies of meson bound states various im-

provements of the Fermi-Breit potential have been

applied[2—5, 8, 9, 17, 18]. However, all of these improve-

ments neglected the momentum-dependent orbit-

orbit coupling term,
Cijαs

2mimj

(p2

r
+

r ·(r ·p)p

r3

)

. In

Ref. [19] the contributions of the retardation ef-

fect and the one-loop radiative corrections of the

quark-antiquark potential were investigated using a

quasipotential approach. With this potential which

includes momentum-dependent coupling terms, the

authors calculated the charmonium and bottomo-

nium spectra. In the present paper we would like to

consider a complete Fermi-Breit potential form which

includes the orbit-orbit coupling term as well as the

other terms. We calculate the mass spectra of 28
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mesons (some of them in their ground states and some

of them in excited states). We find that the contribu-

tions from the orbit-orbit interaction, spin-orbit cou-

pling, and tensor force term in the potential cannot

be omitted. The orbit-orbit coupling term may lead

to an instability of the solution of the Schrödinger

equation and should be regularized.

The paper is organized as follows. In section 2 we

briefly describe the quark potential model. In section

3, we discuss the matrix formulation of the bound

state Schrödinger equation and introduce the meson

wave functions which will be used in our calculations.

The matrix elements of the Schrödinger equation are

presented in section 4. Finally our results, the dis-

cussion and a summary is given in section 5.

2 Quark potential model

Mesons are quark-antiquark bound states. The

nonlocal one-gluon exchange potential (OGEP) for

these states in coordinate space, the Fermi-Breit

potential[20], is given by

V Breit = Cij αs

{

1

r
− 1

2mimj

(pi ·pj

r
+

r ·(r ·pi)pj

r3

)

−

π

2
δ(r)

( 1

m2
i

+
1

m2
j

+
16si ·sj

3mimj

)

−

1

2r3

[

1

m2
i

(r×pi) ·si−
1

m2
j

(r×pj) ·sj +

1

mimj

(

2(r×pi) ·sj −2(r×pj) ·si−

2si ·sj +6
(si ·r)(sj ·r)

r2

)

]

}

, (1)

where Cij is the scattering channel color matrix, αs

is the QCD coupling constant, r = |r| = |r1 − r2| is

the distance between quark i and quark j, mi and mj

are the masses of the constituent quarks, pi and pj

are the quark momenta, si =
1

2
σi is the spin of the

quark i and σi its corresponding Pauli spin vector.

The operator form of the color matrix is given by

Cij =−1

4
λi ·λ∗

j , (2)

where λ are the Gell-Mann matrices. In the center

of mass frame we have pi =−pj . By introducing the

notation p≡pi =−pj , Eq. (1) can be expressed as

V Breit = Cij αs

{

1

r
− π

2
δ(r)

(m2
i +m2

j)

m2
i m

2
j

+

1

2mimj

(p2

r
+

r ·(r ·p)p

r3

)

−

2π

3mimj

(σi ·σj)δ(r)− 1

4mimjr3
(r×p) •

[

(

2+
mj

mi

)

σi +
(

2+
mi

mj

)

σj

]

−

3

4mimjr3
S r

ij

}

+Cij(−V0) . (3)

Here the last term is a constant potential used to ad-

just the meson mass in solving the Schrödinger equa-

tion, and

S r
ij =

(r ·σi)(r ·σj)

r2
− 1

3
(σi ·σj), (4)

is the tensor-force operator varying with r.

In addition to the one-gluon exchange potential,

the interaction between the quark and the antiquark

also includes a confining potential which is taken

traditionally to be proportional to the separation

r[9, 21, 22]:

V c =−Cij

(3

4
b
)

r , (5)

where Cij is the same color matrix as in the Fermi-

Breit potential and b is a string tension coefficient.

Because free mesons are color singlet states, the color

factor is Cij =−4/3.

3 Bound state Schrödinger equation

and meson wave functions

A conventional method to solve the Schrödinger

equation is the matrix approach which can be used

easily in numerical calculations[9, 22, 23]. Using this

approach to calculate the bound states of a meson

we need a set of basis wave functions. In this section

we discuss the matrix formulation of the bound state

Schrödinger equation and introduce the meson wave

functions used in our calculations.

The Schrödinger equation for a meson bound state

in coordinate space is

p2

2µr

Φ(r)+V (r)Φ(r) = EΦ(r), (6)

where µr = mimj/(mi + mj), p, and r are the re-

duced mass, center-of-mass momentum, and rela-

tive coordinate between the quark and antiquark,

V = V Breit + V c is the total potential, and Φ(r) is

the meson wave function. The energy E and the to-

tal mass M of the meson satisfy E = M−mi−mj .
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We expand the meson wave function Φ(r) into a

set of basis functions φnl(r):

Φ(r) =
∑

n, l

anlφnl(r). (7)

Inserting this expansion into Eq. (6) and multiplying

with φ†

ml′ (r) from the left we get

∑

n, l

anl

[

φ†

ml′ (r)
p2

2µr

φnl(r)+φ†

ml′ (r)V (r)φnl(r)

]

=

E
∑

n, l

anlφ
†

ml′(r)φnl(r) . (8)

By integrating this equation over the whole coordi-

nate space, we obtain
∑

n, l

anl

[

Tmn +Vmn

]

= E
∑

n, l

anlBmn , (9)

where

Tmn = 〈ml′|T |nl〉= (2π)3
∫
drφ†

ml′ (r)
p2

2µr

φnl(r) ,

(10)

Vmn = 〈ml′|V |nl〉= (2π)3
∫
drφ†

ml′ (r)V (r)φnl(r) ,

(11)

Bmn = 〈ml′|nl〉= (2π)3
∫
drφ†

ml′(r)φnl(r) . (12)

In the present paper we use the same basis functions

as in Ref. [9]. In coordinate space they are given by

φnl(r) = Rnl(r)Ylml
(r̂) = Nnl r

l exp
(

−nβ2

2
r2
)

Ylml
(r̂) ,

(13)

where

Nnl =
(
√

2 i)l

4π

√

(2/
√

π)3

(2l+1)!!
(nβ2)

1
2
(l+ 3

2
) . (14)

The radial basis wave functions Rnl(r) are products

of rl with Gaussian functions of different widths.

The advantage of using Gaussian basis functions is

that one gets analytical expression for the matrix el-

ements. Then, the expansion coefficients can be de-

termined by solving the Schrödinger equation numer-

ically. In our calculations, we take six Gaussian basis

functions as in Refs. [9, 22], n = 1, 2, 3, 4, 5, 6. For

the total angular momentum J = 0 and 1, the values

of the orbital angular momentum l are 0, 1, and 2.

For l′ = 0, l′ = 1, and l′ = 2, Eq. (9) becomes

6
∑

n=1

an0

[

Tmn +〈m0|V |n0〉
]

+

6
∑

n=1

an2
〈m0|V |n2〉= E

6
∑

n=1

an0
Bmn , (15)

6
∑

n=1

an1

[

Tmn +〈m1|V |n1〉
]

= E

6
∑

n=1

an1
Bmn , (16)

and

6
∑

n=1

an2

[

Tmn +〈m2|V |n2〉
]

+

6
∑

n=1

an0
〈m2|V |n0〉= E

6
∑

n=1

an2
Bmn . (17)

In Eqs. (15) and (17), the matrix elements coupling

the states with l = 0 and l = 2 are not zero for a meson

spin S = 1. These nonzero elements are arising from

the tensor force interaction in the Breit potential [the

sixth term in Eq. (3)]. Because of the coupling be-

tween the states of l = 0 and l = 2, Eqs. (15) and (17)

must be combined in the calculations as shown below,

although only mesons with angular momentum l = 0

and 1 are considered in this paper.

We introduce a twelve-dimensional vector

a† =
(

a1,a2,a3,a4,a5,a6, b1, b2, b3, b4, b5, b6

)

, (18)

where ai = ail (i = 1,2,3,4,5,6) for a fixed l (=0, 1, or

2), bi = ai2 (i = 1,2,3,4,5,6) for l = 0 and S = 1 (with

nonvanishing coupling matrix elements in this case),

bi = ai0 (i = 1,2,3,4,5,6) for l = 2 and S = 1, and

bi = 0 (i = 1,2,3,4,5,6) for all other quantum num-

bers. In this twelve-dimension space, Eqs. (15), (16)

and (17) can be expressed as one matrix equation

Ha = EBa, (19)

where H = T +V is the Hamiltonian matrix in the

twelve-dimension space and B is a 12×12 matrix con-

structed by the direct product of the same two 6×6

matrices
(

Bmn

)

(m,n = 1,2,3,4,5,6).

In next section we will present the matrix elements

of H and B. The eigenvalues of E can then be ob-

tained by solving Eq. (19) numerically. This will fi-

nally allow us to obtain the meson masses.

4 Matrix elements

In this section, we calculate the matrix elements

needed in Eqs. (15)—(17). From Eqs. (10), (12), and

(13), we have

Tmn = (2l+3)
mn

m+n
Bmn

β2

2µr

, (20)

and

Bmn =

(

2
√

mn

m+n

)l+3/2

δl′l . (21)
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In general the matrix elements of interaction po-

tential can be expressed as

Vmn =
∑

mlms

∑

m′

l
m′

s

〈lml sms|JmJ〉〈l′ m′
l s

′ m′
s|Jm′

J〉×

(2π)3
∫
drφ†

ml′ (r)χ†

sm′

s

c†(ij)×

V (r)φnl(r)χsms
c(ij) , (22)

where l, S, and J are the quantum numbers of the

orbital angular momentum, the spin, and total an-

gular momentum of the meson. ml, ms and mJ are

the corresponding magnetic quantum numbers, χsms

is the spin wave function, and c(ij) is the color wave

function of the meson.

Below we give explicitly the matrix elements of

the interaction potential Eq. (3). Since all of them

possess the same general forms there is no need to

specify the quantum numbers. Because deriving the

final results is a rather cumbersome procedure, we

give here only the results.

The matrix elements for the first and second terms

of the interaction potential are

(V Breit
1 )mn = Cf

4παs

(2π)3/2
β

2ll!

(2l+1)!!

√
m+nBmn,

(23)

(V Breit
2 )mn = −Cf(4παs)

(m2
i +m2

j)

8m2
i m

2
j

×

(mn)3/4β3π−3/2δl0δl′l, (24)

where Cf =−4

3
is the color matrix element.

The matrix element for the l-l, s-s, and l-s coupling

terms in the potential Eq. (3) are given by

(V Breit
3 )mn = Cf

4παs

mimj

β3 2mn√
m+n

Bmn

(2π)3/2
, (l = 0) ,

(25)

(V Breit
3 )mn = Cf

4παs

mimj

β3 2mn√
m+n

Bmn

(2π)3/2

2l(l+1)!

(2l+1)!!
−

Cf

αs(2π)3

2mimj

l(l−1)

∫
drφ†

ml′ (r)r−3φnl(r) ,

(l > 0) , (26)

(V Breit
4 )mn = −Cf

2

3

4παs

4mimj

(mn)3/4β3π−3/2×

2
[

s(s+1)−3/2
]

δl0δl′l , (27)

(V Breit
5 )mn = 0 , (l = 0) , (28)

(V Breit
5 )mn= Cf

√
6αs

4mimj

(

4+
mi

mj

+
mj

mi

)

ŝ2 l̂
√

l(l+1)×

(−1)l(2π)3
∫
drφ†

ml′(r)r−3φnl(r)×

(−1)1+J

{

s s 1

l l J

}







s s 1
1

2

1

2

1

2







, (l > 0) ,

(29)

where the symbol Â denotes
√

2A+1.

The matrix element for the tensor force term is

(V Breit
6 )mn = 0 , (l = 0) , (30)

(V Breit
6 )mn = Cf

3αs

mimj

√

5

6
δs1(l̂)

2

(

l′ l 2

0 0 0

)

(−1)J ×

{

s l J

l′ s 2

}

l̂′

l̂
(−1)(l

′+l)×

(2π)3
∫∞
0

dr r2R∗
ml′(r)r

−3Rnl(r),(l > 0),

(31)

where

(2π)3
∫∞

0

dr r2R∗
ml′(r)r

−3Rnl(r) =

Al′l

1

2

(

l′+ l

2
−1

)

!ν−(l′+l)/2 , (32)

Al′l =
(−1)l′i(l

′+l)2( l
′+l

2
+2)

√

(2l′+1)!!(2l+1)!!

1√
π

β(l′+l+3)(mn)3/4×

1

2
(ml′/2nl/2 +nl′/2ml/2) , (33)

ν =
1

2
β2(m+n) . (34)

The matrix element for the constant term is

(V Breit
7 )mn = Cf(−V0)Bmn . (35)

In this paper a linear confining potential is used.

Its matrix element is given by

(V c)mn = Cf

(

− 3

4

)

b

β

8π

(2π)3/2

2l(l+1)!

(2l+1)!!

Bmn√
m+n

.

(36)

5 Results and conclusions

We focus our attention first on the calculated re-

sults of the meson spectra given in Table 1. In the

second column we list the experimental meson masses

from Ref. [10]. In the third and fourth columns we list

our theoretical meson masses M and the root-mean-

squared radii calculated with the Fermi-Breit poten-

tial. For comparison, we also present in columns 5
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to 7 the results from previous papers[9, 10]. Finally

we present the values of the Gaussian parameter β

used in the basis wave functions in the eighth column.

Fig. 1 shows the experimental data and our results of

the meson spectra. The expansion coefficients of the

wave function in Eq. (19) are listed in Table 2.

In our model, the adjustable parameters are the

string tension coefficient b, the constant potential

term V0, five quark masses mu = md, ms, mc, mb,

and the QCD coupling constant αs. In our calcu-

lations they are taken as: b = 0.228 GeV2, V0 =

−0.798 GeV, mu = md = 0.380 GeV, ms = 0.532 GeV,

mc = 1.795 GeV, mb = 5.161 GeV, and αs = 0.185.

The parameter β in Table 1 is a parameter which

describes the width of the wave function. The val-

ues of β are different for different meson groups. For

instance, the values of β for the six D mesons are

the same, and likewise for the four B mesons. The

values of β have been chosen in such a way as to im-

prove the accuracy. The final values turned out to be

almost equal to those of a previous work[9]. In the

Fig. 1. Comparison of the theoretical meson

masses and experimental data.

Table 1. Results of meson masses and root-mean-square radii.

meson M(exp)/GeV M/GeV
√

〈r2〉/fm M/GeV[10] M/GeV[9]
√

〈r2〉/fm[9] β/GeV

π(11S0) 0.140 0.139 0.337 0.143 0.140 0.512 0.3444

K(11S0) 0.494 0.497 0.387 0.494 0.495 0.521 0.3936

K∗(13S1) 0.892 0.870 0.663 0.907 0.904 0.674 0.3936

ρ(13S1) 0.770 0.775 0.706 0.788 0.774 0.769 0.3444

φ(13S1) 1.020 0.958 0.640 1.031 0.992 0.647 0.3444

b1(11P1) 1.235 1.293 0.940 1.397 1.330 0.978 0.3444

a1(13P1) 1.260 1.206 0.856 1.573 1.353 0.993 0.3444

φ(23S1) 1.686 1.759 0.926 1.852 1.870 0.983 0.3444

D(11S0) 1.869 1.998 0.591 1.865 1.913 0.585 0.3936

D∗(13S1) 2.010 2.031 0.618 1.998 1.998 0.626 0.3936

Ds(11S0) 1.969 2.038 0.526 1.976 2.000 0.508 0.3936

D∗
s (13S1) 2.112 2.079 0.559 2.121 2.072 0.546 0.3936

D1(11P1) 2.422 2.486 0.831 2.408 2.506 0.840 0.3936

D2(13P2) 2.460 2.454 0.807 2.381 2.514 0.845 0.3936

ηc(11S0) 2.979 3.036 0.378 2.978 3.033 0.388 0.5136

J/ψ(13S1) 3.097 3.079 0.408 3.128 3.069 0.404 0.5136

hc(11P1) 3.570 3.444 0.584 3.520 3.462 0.602 0.5136

χc(13P1) 3.525 3.433 0.575 3.507 3.466 0.606 0.5136

ψ′(23S1) 3.686 3.667 0.694 3.689 3.693 0.666 0.5136

B(11S0) 5.279 5.358 0.584 5.272 5.322 0.574 0.4500

B∗(13S1) 5.324 5.367 0.592 5.319 5.342 0.583 0.4500

Bs(11S0) 5.369 5.390 0.524 5.368 5.379 0.503 0.4500

B∗
s (13S1) 5.416 5.402 0.533 5.426 5.396 0.513 0.4500

Υ(13S1) 9.460 9.514 0.257 9.453 9.495 0.255 0.6356

χb(13P1) 9.899 9.832 0.396 9.889 9.830 0.423 0.6356

Υ(23S1) 10.020 9.974 0.501 10.023 9.944 0.519 0.6356

χb(23P1) 10.260 10.190 0.598 10.257 10.166 0.604 0.6356

Υ(33S1) 10.350 10.061 0.145 10.359 10.340 0.573 0.6356
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Table 2. Expansion coefficients of the meson wave functions.

meson a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6

π(11S0) −1.744 21.700 −95.776 199.557 −194.520 71.904 0.000 0.000 0.000 0.000 0.000 0.000

K(11S0) −0.872 14.899 −65.616 136.548 −132.858 49.069 0.000 0.000 0.000 0.000 0.000 0.000

K∗(13S1) 1.919 −5.884 18.927 −32.709 28.322 −9.586 −0.009 0.210 −0.894 1.932 −1.988 0.792

ρ(13S1) 1.513 −4.449 16.206 −29.867 27.025 −9.435 −0.016 0.276 −1.172 2.535 −2.611 1.042

φ(13S1) 0.960 −2.001 9.210 −18.110 17.024 −6.073 −0.009 0.184 −0.777 1.686 −1.735 0.692

b1(11P1) 1.420 −2.069 4.943 −6.582 4.563 −1.242 0.000 0.000 0.000 0.000 0.000 0.000

a1(13P1) −0.993 −0.140 2.958 −8.915 10.318 −4.346 0.000 0.000 0.000 0.000 0.000 0.000

φ(23S1) 3.846 −12.399 24.629 −30.326 19.051 −4.766 −0.440 −0.071 0.615 −1.937 2.296 −1.006

D(11S0) 1.144 −1.441 4.051 −5.665 4.075 −1.130 0.000 0.000 0.000 0.000 0.000 0.000

D∗(13S1) −1.402 3.211 −11.031 19.473 −17.093 5.839 0.001 −0.066 0.279 −0.603 0.618 −0.245

Ds(11S0) 0.620 0.702 −2.193 5.102 −5.244 2.064 0.000 0.000 0.000 0.000 0.000 0.000

D∗
s (13S1) −0.905 1.374 −6.506 12.591 −11.707 4.137 0.003 −0.077 0.321 −0.696 0.714 −0.284

D1(11P1) 1.440 −2.070 4.946 −6.713 4.771 −1.353 0.000 0.000 0.000 0.000 0.000 0.000

D2(13P2) 1.305 −1.493 3.151 −3.397 1.713 −0.232 0.000 0.000 0.000 0.000 0.000 0.000

ηc(11S0) 0.398 1.946 −7.215 15.286 −14.991 5.648 0.000 0.000 0.000 0.000 0.000 0.000

J/ψ(13S1) 0.720 −0.439 2.918 −5.420 4.901 −1.644 −0.003 0.075 −0.315 0.682 −0.699 0.278

hc(11P1) 1.007 −0.572 1.704 −2.207 1.483 −0.376 0.000 0.000 0.000 0.000 0.000 0.000

χc(13P1) 0.950 −0.347 0.964 −0.776 0.126 0.133 0.000 0.000 0.000 0.000 0.000 0.000

ψ′(23S1) 4.439 −14.705 31.069 −41.084 28.196 −7.845 −0.097 −0.034 0.218 −0.600 0.678 −0.287

B(11S0) 1.848 −4.605 12.945 −20.242 16.209 −5.153 0.000 0.000 0.000 0.000 0.000 0.000

B∗(13S1) −1.930 5.135 −14.902 23.980 −19.655 6.380 0.000 −0.021 0.089 −0.194 0.199 −0.079

Bs(11S0) 1.208 −1.933 6.172 −10.023 8.270 −2.672 0.000 0.000 0.000 0.000 0.000 0.000

B∗
s (13S1) −1.309 2.605 −8.794 15.185 −13.117 4.420 0.000 −0.027 0.113 −0.245 0.251 −0.099

Υ(13S1) −0.092 −1.508 3.932 −8.314 8.137 −3.214 0.003 −0.044 0.189 −0.414 0.428 −0.171

χb(13P1) 0.375 1.057 −1.692 2.950 −2.588 0.958 0.000 0.000 0.000 0.000 0.000 0.000

Υ(23S1) 2.621 −4.938 10.436 −17.542 14.756 −5.159 −0.009 −0.064 0.207 −0.433 0.435 −0.172

χb(23P1) 2.583 −5.884 10.904 −15.551 11.686 −3.655 0.000 0.000 0.000 0.000 0.000 0.000

Υ(33S1) 0.102 −0.099 −0.337 1.072 −1.218 0.486 0.613 0.643 −0.693 0.990 −0.764 0.263

numerical calculations it has been noted that in case

the momentum-dependent orbit-orbit coupling term

was involved in the potential, the mass of the π-

meson heavily depended on the parameter βπ. For

instance, the solution for π shows a fluctuations when

we change the parameter βπ perturbatively, e.g. by

0.1 GeV around βπ = 0.3444 GeV. This instability can

be improved by regularizing the orbit-orbit coupling

interaction in the potential[24]. As one can see from

Table 1 and Fig. 1, the Fermi-Breit interaction with

a confining potential can describe the gross features

of the low-lying meson states. The splitting between

π and ρ is well described. The splitting between J/ψ

and ηc is however too small and needs further inves-

tigation in the future.

In our calculations the 28 experimental meson

masses (listed in the second column of Table 1) are

input quantities. The values of the adjustable param-

eters b, V0, mu,d, ms, mc, mb, and αs are determined

by minimize the χ2 between the 28 experimental me-

son masses and the corresponding calculated meson

masses. We find that the determined values of the

quark masses are in reasonable regions. The value

of b is between the values 0.18[9] and 0.35[22, 25]. The

value of αs is a little bit small but acceptable. We

also find that if we omit the momentum-related orbit-

orbit coupling term in the Fermi-Breit potential, the

masses of π and K, for instance, will change by about

5% and 1%, respectively. The root-mean-square radii

of the mesons will change if we omit the orbit-orbit

coupling term. As the root-mean-square radii are re-

lated to the meson reaction cross sections and de-

cay properties, further investigations of the effect of

the momentum dependent potential by combining the

bound state mass and the experimental cross section

data will be of great interest. On the other hand,

we only consider the velocity-dependent terms in the

Fermi-Breit potential and use a fixed strong coupling

constant in this paper. It would be also interesting

to consider velocity-dependent effects in the confin-

ing potential and use a running coupling constant in

future investigations.

In summary, we calculated the meson masses in

a quark potential model using a complete Fermi-
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Breit potential. The momentum-dependent orbit-

orbit coupling term,
Cijαs

2mimj

(p2

r
+

r ·(r ·p)p

r3

)

, is

taken into account. It turned out that the contri-

butions from the orbit-orbit coupling interaction, the

spin-orbit coupling, and the tensor interaction can-

not be omitted. A high degree of accuracy of the

masses is essential since they contribute to all consid-

ered terms. The orbit-orbit coupling term may lead

to an instability of the solution of the Schrödinger

equation and should be regularized. Further investi-

gations on the meson cross sections and the velocity-

dependent effect in the confining potential will be of

great interest.
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