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An artificial neural network for proton identification

in HERMES data *
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Abstract The HERMES time-of-flight (TOF) system is used for proton identification, but must be carefully

calibrated for systematic biases in the equipment. This paper presents an artificial neural network (ANN)

trained to recognize protons from Λ0 decay using only raw event data such as time delay, momentum, and

trajectory. To avoid the systematic errors associated with Monte Carlo models, we collect a sample of raw

experimental data from the year 2000. We presume that when for a positive hadron (assigned one proton mass)

and a negative hadron (assigned one π
− mass) the reconstructed invariant mass lies within the Λ0 resonance,

the positive hadron is more likely to be a proton. Such events are assigned an output value of one during the

training process; all others were assigned the output value zero.

The trained ANN is capable of identifying protons in independent experimental data, with an efficiency

equivalent to the traditional TOF calibration. By modifying the threshold for proton identification, a researcher

can trade off between selection efficiency and background rejection power. This simple and convenient method

is applicable to similar detection problems in other experiments.
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1 Introduction

The HERMES (HERA MEeasurement of Spin)

experiment uses 27.6 GeV/c electrons or positrons

from the HERA accelerator (DESY laboratory, Ham-

burg) to study the quark-gluon spin structure of nu-

cleons by deep inelastic scattering[1, 2].

The HERMES spectrometer uses two detectors

to identify hadrons. A dual-radiator ring-imaging

Čerenkov detector (RICH)[3] takes care of hadrons

with momenta above 2.0 GeV/c. The other detector

is a time-of-flight (TOF) system capable of identifying

hadrons below this limit. As the TOF system both

improves statistics and increases the overall range,

tuning it carefully is certainly worthwhile.

The TOF system has already been calibrated in

the traditional manner[4], but the process is compli-

cated and time-consuming. As an alternative, we

propose a method using artificial neural networks

(ANN). The goal is to distinguish protons from other

particles based only on track characteristics such as

momentum and trajectory.

An ANN must be provided with a training sample:

data where the identities of the particles are known.

Monte Carlo (MC) data are often used for this pur-

pose, since event parameters for protons and non-

protons can easily be simulated. If the MC data do

not correctly model the detector performance, how-

ever, systematic errors will be introduced. To avoid

this problem, the method introduced here uses raw

experimental data to train the ANN.

2 HERMES spectrometer

The structure of the HERMES spectrometer is de-

scribed in Fig. 1.
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Fig. 1. Side view of the HERMES spectrometer. See the text for the meanings of the labels.

Physical models of particle data rely on the pro-

duction vertices and momenta of decay products. The

trajectory of the particle is measured by microstrip

gas chambers (MSGC), also referred to as vertex

chambers (VC), as well as drift chambers in front

of the magnet (DVC, FC1/2) and behind the mag-

net (BC1/2 and BC3/4). In addition, there are three

proportional chambers inside the magnet (MC1/3).

These help match the front and back tracks, and also

detect low-momentum particles that do not reach the

spectrometer. The momentum of a charged particle

can be calculated from the curvature of its trajec-

tory inside the magnet, whose field is known. Several

detectors act in concert to distinguish leptons from

hadrons: a lead-glass calorimeter; a pre-shower detec-

tor (H2) consisting of two radiation lengths of lead fol-

lowed by a plastic scintillator hodoscope; a transition

radiation detector (TRD) consisting of six identical

modules; and the RICH detector. The calorimeter

and preshower detector are included in the trigger,

along with a second hodoscope (H1) placed in front

of the TRD[5].

Both H1 and H2 are composed of vertical scintil-

lator modules (each has 84, divided equally between

the upper and lower detectors). The scintillation light

from each module is detected by a photomultiplier

tube (PMT). The combined PMT signal from a ho-

doscope is passively split, with one output going to a

LeCroy 1881M ADC and the other going to a LeCroy

3420 constant fraction discriminator (CFD). Individ-

ual CFD outputs are fed into time-to-digital convert-

ers (TDC)[4]. This result can be used as a stop time

for the particle. The moment when the HERA bunch

crosses the center of the target is used as the start

time. Together, these two measurements are used to

calculate the HERMES TOF. The HERA beam has

a bunch length of 27 ps and the distance between

bunches is 96 ns, so particles from different bunches

are completely separated.

3 Hadron identification by TOF

We now describe how to calibrate the TOF system

for particle identification.

3.1 Traditional calibration

Previous calibration work done by our colleagues

is based on the fact that electrons above 10 MeV are

moving at essentially the speed of light. Any mea-

sured deviations from this speed must therefore be

due to artificial limitations of the experiment, and

should be corrected. Several corrections have been

taken into account: different cable lengths, variance

in the time needed for light created inside a scintilla-

tor to reach the PMT, different PMT response times,

and others. This method places an upper limit of

2.9 GeV/c on the momentum of protons that can be

identified by TOF [4].

One fact has not been corrected in the current cali-

bration. The magnetic field has a deflecting power of∫
Bdl = 1.3 T ·m[5], so low-momentum charged par-
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ticles follow a curved trajectory inside the magnet.

Within the magnetic field, they are deflected through

a total angle |φ|:

|φ|= 0.2998

p

∫
Bdl . (1)

The angle is expressed in radians, and the momen-

tum in GeV/c. These particles can be identified by

the TOF system, but calculation of their actual tra-

jectories would be very complicated. Instead, the tra-

ditional calibration method approximates the trajec-

tory with two straight lines: one from the front vertex

to the center of the spectrometer magnet, and the

other from this point to the H1 and H2 detections.

This procedure clearly introduces some error into the

TOF calculation.

To avoid such corrections and difficulties, we have

developed a new calibration method using artificial

neural networks (ANN).

3.2 ANN approach

This section describes the structure of the ANN

and its performance based on training and experi-

mental data.

3.2.1 Structure of the ANN

The momentum of a relativistic particle can be

written as

p = m0

β√
1−β2

, (2)

where m0 is the rest mass and β = v/c can be cal-

culated from the time of flight (TOF) and trajectory

length (between the target cell and the position of

hodoscope H1 or H2).

Likewise, the rest mass can be expressed as

m2
0 = p2

(

1

β2
−1

)

. (3)

The TOF system uses this measure of m2
0 to identify

particles.

The ANN takes primary event parameters (mo-

mentum, time of flight and trajectory) as inputs, and

classifies the particle as either a proton or a non-

proton. All these input parameters are available in

HERMES spectrometer records. The ANN must be

trained on events where the identity of the particle is

known.

Consider an event with two particles: one is a

positively charged hadron (assigned one proton

mass), and the other is a negative hadron (assigned

one π
− mass). If their reconstructed invariant mass

falls within the Λ0 resonance, there is a high proba-

bility that the positive hadron is a proton. If the re-

constructed invariant mass falls outside the Λ0 peak,

the probability is considerably lower.

Our ANN code is taken from the ROOT

platform[6]. The network has two hidden layers, as

shown in Fig. 2.

The ANN is composed of “neurons” (the nodes

in Fig. 2), which are characterized by a threshold

activation function. Every neuron is linked to all

the neurons in the two adjacent layers (we call these

links “synapses”). Each synapse is characterized by

a single numerical weight, so each neuron receives a

weighted sum of the prior layer’s outputs. The first

layer is composed of inactive neurons, and just serves

to pass on the input data. The hidden neurons use a

sigmoid activation function in our work. The output

Fig. 2. The artificial neural network used for proton identification. Line widths are used to indicate synapse weights.
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neuron produces a signal directly proportional to

its inputs. We use the learning method of Broy-

den, Fletcher, Goldfarb and Shanno (BFGS) to train

the network (this is an algorithm for adjusting the

weights in response to training data). For more

information about ANNs, we refer the reader to

the “TMultiLayerPerceptron” class description in the

ROOT platform[6].

The input parameters are: TH1, the time of flight

measured by H1; TH2, the time of flight measured by

H2; Px, Py and Pz, momentum components of the

particle in the laboratory frame; X0 and Y0, coordi-

nates of the target cell centroid in the z = 0 plane,

perpendicular to the HERA beam; X1 and Y1, coordi-

nates of the point where the particle passed through

the z-plane in the middle of the spectrometer mag-

net; Kx1 and Ky1, the slopes dx/dz and dy/dz of the

particle trajectory after passing through the z-plane

in the middle of the magnet (z = 275 cm).

The inputs are automatically normalized by the

ANN before beginning the training process. For

each parameter x the normalized values x′ are x′ =
xi−mean

RMS
, where the mean and RMS (root mean

square, or standard deviation) are calculated over all

examples in the training data.

3.2.2 Training the ANN

The ANN was trained using HERMES data taken

in the year 2000 (run numbers less than 5000). We se-

lect events with two oppositely charged tracks, assign

a proton mass to one and a π
− mass to the other, then

reconstruct the invariant mass. If the reconstructed

mass falls under the Λ0 resonance we assign its Type

to 1, meaning that the positively charged particle

is a proton. Otherwise we assign its Type to 0.

To suppress background events, we impose two cuts:

(1) the Λ0 candidate must have flown at last 10

cm from the interaction point before decaying, and

(2) the distance of closest approach (DCA) for the two

tracks must be less than 1 cm. Due to background

events, it is still possible for a positively charged par-

ticle to be misidentified under this system. The par-

ticles which have been assigned Type 1, however, are

much more likely to be protons than those which have

been assigned Type 0. (This statement will be quan-

tified in the next section.) The ANN is used to figure

out which patterns of input variables correspond best

to the two particle types.

Once the ANN has been trained, the same event

parameters can be used by the ANN to classify other

particles. The ANN output is a continuous number

between 0 and 1. Since all the training events are

assigned values of either 0 or 1, the actual outputs

should be close to one of these extremes. The closer

the output is to 1, the higher the probability that the

particle is a proton. If the value is close to 0, it is

more probable that the particle is not a proton. For

Fig. 3. Output of the trained ANN. The inset histogram shows how the training sample was selected. Events

with a reconstructed invariant mass under the Λ0 resonance (the region filled with vertical lines) were assigned

Type 1 (proton). Events with a reconstructed invariant mass outside the resonance (the region filled with

horizontal lines) were assigned Type 0 (non-proton). The outputs produced by the trained ANN on these

same events are described by the main histogram and normalized separately.
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more details we refer the reader to Fig. 3, which

presents the normalized distribution of training data

outputs obtained after training the ANN. The mean

value of the output distribution for particles which

have been assigned type 1 is clearly higher than that

for particles assigned 0. The strong peak in this

distribution corresponds to misclassified background

events, while the low, broad peak corresponds to ac-

tual protons. If the output of the trained ANN is

greater than 0.2 (see Fig. 3), the particle is more than

50% likely to be a proton. These distributions can be

used to calculate the probability as a function of out-

put value.

The various inputs have different impacts on the

ANN output, as shown in Fig. 4. The influence of a

variable on the result is evaluated by shifting its value

by ±0.1RMS while holding the others constant, then

calculating the difference between the two outputs.

This is done for each event in the training sample.

The resulting distributions are drawn in Fig. 4, and

their summary statistics are listed in Table 1.

Fig. 4. Distributions of the change (“impact”)

in network output resulting from a small vari-

ation (±0.1RMS) in each input, while holding

other variables constant. Summary statistics

of the histograms are listed in Table 1.

Table 1. Mean and RMS values of the impact

distributions in Fig. 4.

inputs mean RMS

TH1 0.06480 0.09211

TH2 0.03356 0.04785

Px 0.00886 0.01344

Py 0.01296 0.02153

Pz 0.01134 0.02022

X0 0.01054 0.01813

Y0 0.00289 0.00498

X1 0.01381 0.02176

KX1 0.01937 0.02681

Y1 0.00912 0.01603

KY 1 0.01616 0.02385

Flight time values (H1 and H2) have the greatest

impact on the ANN, which is reasonable because the

particle mass is correlated with momentum and with

therefore flight time (see Eq. (3)). The least impor-

tant variable is Y0 (at z = 0 m), because this point

is very far from the two detectors (which lie around

z ≈ 7 m, as shown in Fig. 1). Most of the Y0 inputs

are therefore distributed in the range ±2 cm, and this

coordinate has little impact on the total length of the

particle trajectory.

3.2.3 Applying the trained ANN

An independent sample of data taken in the year

2000 (run numbers from 5001 to 10000) was used to

evaluate the trained ANN. The event selection pro-

cess was much the same: positively charged hadrons

were assigned a proton mass and negatively charged

hadrons within the same event were assigned a π
−

mass. The invariant mass was reconstructed to iden-

tify Λ0 candidates. We required a flight distance

greater than 10 cm for the reconstructed Λ0 particles,

and a DCA less than 1.0 cm for the decay products.

The expected number of protons was taken by fit-

ting the reconstructed invariant mass spectrum with

a Gaussian distribution and a linear background, then

integrating the Gaussian within ±2σ from the mean.

Fig. 5 shows three spectra of the positive hadron

masses obtained in this sample. The first panel (a)

includes all selected events, without any particle iden-

tification. The middle panel (b) shows only those

protons identified by the traditional TOF calibration.

The third spectrum (c) includes protons identified by

the trained ANN.

The two peaks shown in panels (b) and (c) of

Fig. 5 are very similar in shape, as the fit parameters

indicate. When we compare individual events in the

invariant mass range 1110.89—1119.65 MeV (±1σ),

however, we find that only 90.77% of the events are

classfied the same way by both methods. Further-

more, the ANN method is clearly as effective as the

traditional method at suppressing background events.

Further investigation indicates that the higher we

place the threshold f0 for proton identification, the

more background events are rejected. The selection

efficiency also decreases, of course. Unfortunately, it

is not possible to obtain a 100% pure data sample.

To get a rough idea of the relationship between rejec-

tion power and selection efficiency, we ran f0 through

a range of values and recorded the following informa-

tion:

1. The number of Λ0 events obtained after TOF

identification, compared to that obtained without any

identification (“Selection Efficiency”).
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Fig. 5. Invariant spectra of M(pπ
−) for events falling within the Λ0 resonance. The fitting function is a

Gaussian (peak) plus a first-order polynomial (background). The positive hadrons in panel (a) have NOT

been identified; all events are included. Panel (b) contains only protons identified by the traditional TOF

system. Panel (c) contains only protons identified by the ANN (any positive hadron with an output greater

than 0.225 is judged a proton). The momenta of the positive particles are less than 2.9 GeV/c, the upper

limit of the traditional TOF calibration method. Fit parameters are given for each plot. The number of Λ0

events is calculated as
√

2πAσ, where A is the amplitude of the Gaussian fit. The number of background

events is found by integrating the polynomial within ±2σ of the Gaussian mean.

Fig. 6. Selection and rejection ratios as a function of the ANN proton identification threshold f0. All three

measures are defined in the text. The error bars are calculated from fitted parameters, and only include

statistical contributions.

2. The ratio of background counts within ±2σ

of the peaks without and with ANN identification

(“Rejection Power”, calculated with
NnonANN

Bg

NANN
Bg

, where

NnonANN
Bg for the background count without ANN and

NANN
Bg with ANN identification), and

3. The fraction
NΛ0

NΛ0 +NBg

.

The results are shown in Fig. 6.

Around f0 = 0.1, the “Rejection Power” and
NΛ0

NΛ0 +NBg

curves increase abruptly. This corre-

sponds to the edge of the non-proton histogram ob-

served in Fig. 3. The slow increase in
NΛ0

NΛ0 +NBg

after 0.12 reflects a reduced contamination from π
+

and K+ events (which should only account for about

1% of the total, according to reference[4]). The “Se-

lection Efficiency” decreases steadily, since more and
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more real Λ0 decays are rejected by the network. We

suggest setting the threshold to 0.225, which results

in a “Selection Efficiency” of 0.955±0.046 and a “Re-

jection Power” of 6.8±0.9.

4 Conclusion

We have presented a new TOF calibration pro-

cess based entirely on experimental data, using the

ANN code provided by the ROOT platform. All of

our work can easily be cross-checked and repeated.

This simple and convenient procedure to identify

protons should be an attractive choice in experiments

where a Λ0 peak is evident. The method is not lim-

ited to proton identification—it is equally applicable

to kaons and other particles provided an appropriate

training sample is available.
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