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Relativistic description of single-particle

resonances via phase shift analysis
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Abstract Single-particle resonant states in spherical nuclei are studied by the real stabilization method in

coordinate space within the framework of self-consistent relativistic mean field theory. Taking 122Zr as an

example, the resonant parameters, including the energies and widths are extracted by fitting energy and phase

shift. Good agreement with the previous calculations has been found. The details of single-particle resonant

states are analysed.
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1 Introduction

In the past decade, the development of radioac-

tive nuclear beams has extended our knowledge of

nuclear physics from the stable nuclei to the unstable

nuclei far from the stability line[1, 2]. Intense research

in this area shows that there exist lots of unexpected

phenomena: strange nuclear structures such as the

neutron halo (skin) and the proton halo (skin)[3—11].

In these nuclei, the Fermi surface is usually close to

the particle continuum, thus the contribution of the

continuum and/or resonances is essential for exotic

nuclear phenomena[7, 12—16]. It has been also revealed

that the contribution of the continuum mainly comes

from single-particle resonant states[17, 18]. Therefore,

a proper treatment of resonant states is important

for a deeper understanding of the properties in exotic

nuclei.

So far, combined with relativistic mean-field

(RMF) theory, there are several bound-state-like

approaches being developed to deal with resonant

states, including the scattering phase shift method

(RMF-SPS)[19], analytic continuation in the coupling

constant (RMF-ACCC)[20] and the real stabiliza-

tion method (RMF-RSM)[21]. Furthermore, different

physics quantities are proposed to extract the res-

onance energy and width, including phase shifts[22],

density of states[23], etc.

Since 122Zr is the core of the giant neutron halo

predicted in the RCHB calculations[8], and the reso-

nant states in 122Zr have been obtained by the scat-

tering method[19], this nucleus has been chosen for

the present study. Recently, two simple methods pro-

posed by Maier et al.[23] and Mandelshtam et al.[24]

have been adopted in a RMF+RSM calculation to

extract the resonance parameters in Ref. [25]. Good

agreement with the RMF-SPS and RMF-ACCC pre-

dictions has been found.

The phase shift is a very important quantity in

the study of the properties of resonant states. There-

fore, it is interesting to extract the resonance parame-

ters by explicitly evaluating the phase shifts of single-

particle resonances. In this paper, the neutron reso-

nance states in 122Zr will be studied within the RMF-

RSM approach in coordinate space. The wave func-

tions, phase shifts, energies and widths of the single-

particle resonant states in 122Zr will be investigated,

in detail.

2 The model

The standard equation of motion for the nucleon

in the relativistic mean-field description of a nucleus
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is given by the Dirac equation [11],

[α •p+V (r)+β(M+S(r))]ψα = εαψα , (1)

where V (r) and S(r) are the vector and scalar po-

tentials, respectively. εα indicates the single particle

energy. The Dirac spinor ψα, with spherical symme-

try, is characterized by the angular momentum quan-

tum numbers l, j, m, the isospin t=±
1

2
for neutron

and proton, respectively, and all the remaining other

quantum numbers are summarized by i.

ψα(r) =
1

r





iGlj
i (r)Y l

jm(θ,φ)

−F lj
i (r)(σ · r̂)Y l

jm(θ,φ)



χt(t), (2)

where Y l
jm(θ,φ) are the spinor spherical harmonics.

Glj
i (r) and F lj

i (r) are the radial wave functions for the

large and small components, which are determined by

the following coupled differential equations,

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







(
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∂
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κ
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lj
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∂
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κ
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Glj
i (r)− [M−Vm(r)]F lj

i (r) = εαF
lj
i (r),

(3)

where, Vp(r) = V (r) + S(r), Vm(r) = V (r) − S(r),

κ= (−1)j+l+1/2(j+1/2).

With the vector V (r) and scalar potentials S(r)

self-consistently obtained within the mean field and

no-sea approximations, the Dirac equation, Eq. (3),

is solved in a spherical box of the size Rmax using the

usual box boundary conditions. Thus the continuum

is discretized[21]. When Rmax is large enough, the en-

ergy of a bound state does not change with Rmax. In

the continuum region, there are some states stable

against changes of the size of the box, i.e., the energy

of each of such states is almost constant with changing

Rmax. Such stable states correspond to resonances[21].

At large distances, where both the scalar and

the vector potentials are zero, the radial equations,

Eq. (3), simplify to















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∂2
Glj

i (r)

∂r2
+

[

β2
−
κ(κ+1)
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]

Glj
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F lj

i (r)

∂r2
+

[

β2
−
κ(κ−1)

r2

]

F lj
i = 0 ,

(4)

where β2 = ε2α−M
2. The solutions are given by

G = Cβr [cos(δ)jk(βr)−sin(δ)nk(βr)] , (5)

F = Dβr [cos(δ)jk−1(βr)−sin(δ)nk−1(βr)] , (6)

where C andD are two constants. The phase shift δ is

calculated by matching the wave functions obtained

by solving Eq. (3) numerically with those obtained

by solving Eq. (4) analytically. On the other hand,

the phase shift, at energies near a resonance energy,

is assumed to have the form[22]

δl(E) = δl,pot(E)+tan−1

(

Γ/2

E−Eγ

)

, (7)

where Eγ and Γ are the energy and the width of the

resonance, respectively. The contribution of poten-

tial scattering to the phase shift δl,pot(E) is assumed

to be a slowly varying function of E near Eγ , and is

usually fitted with a polynomial in E. Using Eq. (5),

one can determine the phase shift δl(E) for a given

E. The resonance parameter: Eγ and Γ , as well as

δl,pot(E) can thus be determined by fitting the phase

shift to the function given in Eq. (7).

3 Results and discussion

In this section, taking 122Zr as an example, the

phase shifts δl and the single-particle wave func-

tions of resonance states will be calculated within

the RMF+RSM. Based on the phase shift as a func-

tion of energy, the corresponding resonance param-

eters will be determined. The effective interaction

NL3[26] is adopted in the RMF calculation for single-

particle states. By increasing the box size from 10 fm

to 31 fm, the resonance states are determined based

on the RSM.

Fig. 1. The energies for 1h9/2 and 1i11/2 states

in 122Zr as functions of box size Rmax.
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Figure 1 shows the changing energies for the 1h9/2

and 1i11/2 states against the box size in 122Zr. It

shows that the resonant energy of the 1h9/2 state is

located between 2.190 MeV and 2.202 MeV, while for

the 1i11/2 state, it is between 9.5 MeV and 11.5 MeV.

Given an energy E in this region, it corresponds

to a box size Rmax, in which case, the single-particle

wave functions, including the large and small compo-

nents G and F , are determined by Eq. (3). Thus the

obtained wave function G at any point r in this region

(where the nuclear potential approximately vanishes)

can be substituted into Eq. (5) and the phase shift

δ can be determined. Fig. 2 shows the phase shift δ

as a function of energy. The energies Eγ and widths

Γ of these two resonant states, 1h9/2 and 1i11/2, are

calculated by fitting their phase shifts to Eq. (7) and

obtained as Eγ = 2.196 MeV, Γ = 0.009 MeV, and

Eγ = 10.352 MeV, Γ = 2.260 MeV, respectively.

Fig. 2. The phase shifts δ for the 1h9/2 and

1i11/2 states in 122Zr as functions of energy.

Figure 3 shows the wave functions for the 1h9/2

and 1i11/2 states in 122Zr. The large (solid line) and

small (dotted line) components with r <Rmax are ob-

tained from Eq. (3). Those with r >Rmax, as well as

the large component (dashed line) of the asymptotic

wave function, are obtained from Eq. (5). Rmax cor-

responds to the box size of resonant energy in Fig. 1.

It has to be pointed out that a proper choice of the

matching point r is essential. The potential at the

matching point should vanish. Fig. 3 shows that for

the 1h9/2 and 1i11/2 states, the bound-state-like wave

functions and the asymptotic wave functions in the

region with r > 10 fm are coincidental.

Fig. 3. The wave functions for the 1h9/2 and

1i11/2 states in 122Zr. The large (solid line)

and small (dotted line) components with r <

Rmax are obtained from Eq. (3). Those with

r > Rmax, as well as the large component

(dashed line) of the asymptotic wave function,

are obtained from Eq. (5). Rmax corresponds

to the box size of resonant energy in Fig. 1.

The calculated energies and widths of the single

neutron resonant states, νp1/2, νf5/2, νh9/2, νi13/2,

νi11/2 in 122Zr are given in Table 1. It shows that

νf5/2, νi13/2 and νi11/2 are relatively wide resonant

states, while νp1/2 and νh9/2 are much narrower.

For comparison, the energies and widths of the reso-

nant states predicted by ACCC[20] and SPS[19] are in-

cluded in the 2nd and 3rd rows as well. Similar RSM

calculations[25] but with different effective interaction

PK1[27] for the RMF and different methods[23, 24] to

extract the resonance parameters are listed in the

4th—5th rows. Although the effective interactions

and methods to extract the resonance parameters are

quite different, the agreement for the predicted ener-

gies and widths of the resonant states is quite good,

in particular for νh9/2, νi13/2, and νi11/2 in 122Zr.
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Table 1. Predicted energies and widths of single neutron resonant states, νp1/2, νf5/2, νh9/2, νi13/2, νi11/2

in 122Zr in comparison with SPS
[19]

, ACCC
[20]

and RSM
[25]

, respectively.

p1/2 f5/2 h9/2 i13/2 i11/2

E Γ E Γ E Γ E Γ E Γ

RSM 0.089 0.013 1.210 0.204 2.196 0.009 5.585 0.101 10.352 2.260

SPS[19] — — 1.698 0.497 2.485 0.013 5.783 0.097 — —

ACCC[20] 0.475 0.004 1.6 0.4 2.43 0.014 5.66 0.1 — —

RSM[25] — — 1.419 0.275 2.431 0.011 5.907 0.111 10.648 2.168

RSM[25] — — 1.412 0.116 2.430 0.007 5.907 0.092 10.646 1.083

4 Summary

In summary, the RMF-RSM approach has been

applied to study the resonance states in 122Zr. The

Dirac equation for the neutron is solved in the coor-

dinate space under the box boundary condition. The

resonant states are singled out by studying the stable

behavior of the positive energy states against changes

of the box size. Wave functions and phase shifts of

the resonant states are obtained by matching the

bound-state-like wave function with the asymptotic

solution. The energies and widths are extracted by

fitting energy and phase shift. The predicted results

are compared with those obtained by the SPS[19],

ACCC[20] and RSM[21, 25] approaches and excellent

agreement is found.
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