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Non-thermal Hawking radiation from

the Kerr black hole *
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Abstract We present a short and direct derivation of Hawking radiation by using the Damour-Ruffini method,

as taking into account the self-gravitational interaction from the Kerr black hole. It is found that the radiation

is not exactly thermal, and because the derivation obeys conservation laws, the non-thermal Hawking radiation

can carry information from the black hole. So it can be used to explain the black hole information paradox,

and the process satisfies unitary.
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1 Introduction

In recent years the thermal radiation of a black

hole has become a hot spot in theoretical physics[1, 2].

Many valuable models, such as the tunneling method,

the Hamilton Jacobi method and the gravitational

anomaly method, try to explain the dynamical ori-

gin of a black hole’s thermal radiation. Further-

more, Damour and Ruffini suggested[3] that a massive

charged particle could tunnel out over the horizon by

a wave function which gives rise to the creation of

a pair: one particle will go out and one antiparti-

cle will fall back towards the singularity. This way

they obtained the spectrum of the Hawking radia-

tion. Recently, a semi-classical method of modeling

the Hawking radiation as a tunneling effect has been

developed[4—6]. It’s main point is that the Hawking

radiation of a black hole has not a pure thermal spec-

trum if the self-gravitation taken into account. A

key insight is to find a coordinate system well be-

haved at the event horizon to calculate the emission

rate. Tunneling provides not only a useful verifica-

tion of thermodynamic properties of black holes but

also an alternate conceptual means for understanding

the underlying physical process of black hole radia-

tion. It has been shown to be very robust, having

been successfully applied to a wide variety of exotic

space-times[7—13]. However, there is a complicated

calculating process of the imaginary part of the ac-

tion for the outgoing particle. Lastly, the authors of

Ref. [14] have based on the Damour-Ruffini method

and considering the self-gravitation interaction and

energy conservation, derived the Hawking radiation

from a static spherically symmetric black hole. Their

result shows that the radiation is not exactly thermal

and this non-thermal Hawking radiation can carry in-

formation from the black hole. This can be used to

explain the black hole information paradox and in ad-

dition the process satisfies unitary. In this paper, we

attempt to extend this method to stationary axisym-

metric Kerr black holes. A new method to calculate

the corrected non-thermal Hawking radiation of the

stationary black hole is given, which is more accurate

and more general.

2 Review of the Damour-Ruffini

method

As usual we consider the Kerr metric of the

form[15]
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ds2 = −
(

1− 2Mr

ρ2

)

dt2 +
ρ2

∆
dr2 +ρ2dθ2 +

[

(r2 +a2)sin2 θ+
2Mra2 sin4 θ

ρ2

]

dϕ2−

4Mra2 sin2 θ

ρ2
dtdϕ , (1)

where ρ = r2 + a2 cos2 θ, and ∆ = r2 + a2 − 2Mr =

(r−r+) (r−r−). So we can obtain

r± =M±
√
M 2−a2 . (2)

In this expression, M is the total mass of the black

hole, and a is the angular momentum per unit mass

of the black hole, respectively. The surface gravity of

the event horizon is

κ=
r+−r−

2(r2+ +a2)
. (3)

There is a coordinate singularity in the metric (1) at

the radius of the event horizon. To extend Damour-

Ruffini’s work to Kerr space-time, we should first find

a coordinate system from which we expect that it be

well behaved at the event horizon, and its coordinate

clock synchronization can be transmitted from one

place to another. We first investigate the dragging

coordinate system. Let there be

dϕ

dt
=−g03

g33

=Ω . (4)

The space-time metric corresponding to the Kerr

black hole can be rewritten as

ds2 = − ρ2∆

(r2 +a2)2−∆a2 sin2 θ
dt2 +

ρ2

∆
dr2 +ρ2dθ2 =

ĝ00dt
2 +g11dr

2 +g22dθ
2 . (5)

In fact, the line element (5) represents a three-

dimensional hyper-surface in four-dimensional Kerr

space-time. We can get the pure thermal spectrum of

the Hawking radiation by using the Damour-Ruffini

method. It means that we can also discuss the non-

thermal Hawking radiation in the dragging coordi-

nate system. From Eq. (5), we have

ĝ00 = − (r2 +a2)2−∆a2 sin2 θ

ρ2∆
,

g11 =
∆

ρ2
, g22 =

1

ρ2
, (6)

√−g =
ρ2
√
ρ2

√

(r2 +a2)2−∆a2 sin2 θ
.

In curved space-time the Klein-Gordon equation is

1√−g ∂µ(
√−ggµν ∂ν φ)−m2

0φ= 0 . (7)

With Eq. (5), the Klein-Gordon equation can be re-

duced to

g11 d2R(r)

dr2
+

1√−g
∂

∂r
(
√−gg11)

dR(r)

dr
+

R(r)

ψ(θ)
F (r,θ) =

[

m2
0 +

(

ω+
g03

g33

)2
]

R(r) , (8)

where

F (r,θ) = g22 d2ψ(θ)

dθ2
+

1√−g
∂φ
∂θ

∂
∂θ

(
√
−gg22)

dψ(θ)

dθ
,

(9)

and the wave function φ has been separated as

φ= e−iωtR(r)ψ(θ)eimϕ . (10)

Introduce the Tortoise coordinates

r∗ =
1

2κ
ln[(r−r+)/r+], (11)

thus

d

dr
=

1

2κ(r−r+)

d

dr∗
,

d2

dr2
=

1

4κ2(r−r+)2
d2

dr2
∗

− 1

2κ(r−r+)2
d

dr∗
.

(12)

Substituting Eq. (12) into Eq. (8), we obtain

d2R(r)

dr2
∗

−2κ
dR(r)

dr∗
+

2κ(r−r+)

(

1√−g
∂

∂r
√−g+

1

g11

∂g11

∂r

)

dR(r)

dr∗
+

4κ2(r−r+)2

g11

R(r)

ψ(θ)
F (r,θ) =

4κ2(r−r+)2

g11

[

m2
0 +

(

ω+m
g03

g33

)2

g00

]

R(r) . (13)

Obviously, for r→ r+, we get

2κ(r−r+)

(

1√−g
∂

∂r
√−g

)

= 0,

2κ(r−r+)

(

1

g11

∂g11

∂r

)

= 2κ,

4κ2(r−r+)2

g11

[

m2
0 +

(

ω+m
g03

g33

)2

g00

]

R(r) =

−(ω−mΩ)2R(r) . (14)

Thus, we get the standard wave equation near the

event horizon

d2R(r)

dr2
∗

+(ω−ω0)
2R(r) = 0 , (15)

where ω0 =mΩ. By a simple calculation we get the

radial wave solutions of Eq. (15) as

R1(r) = e−i(ω−ω0)r∗ , R2(r) = ei(ω−ω0)r∗ . (16)
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From R(t,r) = e−iωtR(r), we obtain the ingoing-wave

and outgoing-wave solutions

Rin =R(t,r)R1(r) = e−iωυ , (17)

Rout =R(t,r)R2(r) = e2i(ω−ω0)r∗e−iωυ . (18)

υ = t+ [(ω − ω0)/ω]r∗ is the advanced Eddington-

Finkelstein coordinates.

3 Analytical continuations and the

self-gravitation interaction

In the following discussion, we first rewrite Routas

follows

Rout = e−iωυ

(

r−r+
r+

)

i(ω−ω0)
2κ+

, (19)

which shows that the outgoing wave is not analytic

on the event horizon r+. Therefore we have to ex-

tend it by analytical continuation to inside the hori-

zon through the lower-half complex r-plane

(r→ r+)→|r−r+|e−iπ = (r+−r)e−iπ , (20)

then near the event horizon r+, Rout can be rewritten

as

Rout = e−iωυe
π(ω−ω0)

κ+ e2i(ω−ω0)r∗ . (21)

The scattering probability of the outgoing wave at

the event horizon is

Γ =

∣

∣

∣

∣

Rout(r > r+)

Rout(r < r−)

∣

∣

∣

∣

2

= e
−

2π(ω−ω0)
κ+ . (22)

If a particle with energy radiates from the black hole

and back-reaction of the particle to the space-time is

considered, M should be replaced by (M −ωi), and

the emission probability will be

Γi = exp

[

−2π(ωi−ω0)

κi

]

=

exp

(

−2π[(M−ωi +ω0)(ωi−ω0)]

κi

)

. (23)

For many particles, assuming that they radiate one

by one, we have

Γ =
∏

i

Γi = exp

(

∑

i

−2π[(M−ωi +ω0)(ωi−ω0)]

κi

)

.

(24)

If the emission is regarded as a continuous process

and considering ω0 = mΩ as a constant, the sum in

(24) should be substituted by an integration. The

emission probability will be

Γi = exp

(

−
∫ω

0

2π

κ+

dω

)

= exp

(

−
∫ω′

0

2π(M−ω′)

κ+

dω′

)

.

(25)

According to the first law of thermodynamics, we

have

TdS′ =−dω′ . (26)

Therefore, Eq. (25) can be expressed as

Γ = e−
∫

ω

0
1
T

dω′

= e∆S , (27)

where

∆S =
1

4
×4π×

[

(M−ω)+
√

(M−ω)2−a2
]2−

1

4
×4π×(M+

√
M 2−a2)2 ≈

−2π

[

ω

κ+

−
(

1+
3M

2
√
M 2−a2

+

M 3

4(M 2−a2)3/2

)

ω2 + · · ·
]

. (28)

∆S is the entropy change of the black hole between

before and after the emission. This result is obviously

consists with an underlying unitary theory.

In fact, Quantum theory shows that the transmis-

sion of the outgoing-wave can be expressed as

Γ (i→ f) = |Mfi|2A , (29)

where A is a phase factor, and |Mfi|2 is the square

of the probability amplitude in the transition pro-

cess, and A can be obtained by summing over all fi-

nal states and averaging over all initial states. The

number of final states can be expressed in exponen-

tial form through the final states entropy e∆S, and

similarly, the number of the initial states can be ex-

pressed in exponential form through the final states

entropy e∆S. We obtain

Γ =
exp(Sfinal)

exp(Sinitial)
= e∆S . (30)

Eq. (25) is as same as Eq. (30).

4 Conclusion

In this Letter, we obtained the result that the per-

meation ratio of the outgoing-wave revises the ther-

mal radiation spectrum from the Kerr black hole,

while taking into account the self-gravitational inter-

action of the radiant particle energy to space-time

background. This derived result is in contrast with

previous analysis of the same subject by using the

tunneling method, and satisfies unitary. However, we

use a quite different way that is more simple, more

direct, and clearer in its physical meaning. Moreover,

the calculation is easy, and we don’t have to bother

whether a radiant particle has restmass. It is obvious

that if we consider the self-gravitational interaction,
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the transmission ratio of outgoing-wave at the event

area appears to deviate from the thermal radiation

spectrum of the black hole, which might contain the

related information about the material that makes

up the black hole. This result may lead to resolve

the problem of information loss. In fact, if we calcu-

late the Hawking radiation of the Kerr black hole by

using the Damour-Ruffini method without consider-

ing the self-gravitational interaction of the radiation

energy to time-space background, we get a precise

radiation spectrum of the tunneling process through

the event area. The outgoing-wave has a potential

barrier in Eq. (13), which lies between the event area

and infinite distance. Therefore, in the opinion of an

observer looking at the event area from an infinite

distance the black hole radiation spectrum, dispersed

by the shape, a gray spectrum.
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