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Study of spin sum rules (and the strong coupling

constant at large distances) *
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Abstract We present recent results from Jefferson Lab on sum rules related to the spin structure of the

nucleon. We then discuss how the Bjorken sum rule with its connection to the Gerasimov-Drell-Hearn sum,

allows us to conveniently define an effective coupling for the strong force at all distances.
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1 Introduction

The information on the longitudinal spin struc-

ture of the nucleon is contained in the g1(x,Q2)

and g2(x,Q2) spin structure functions, with Q2 the

squared four-momentum transfered from the beam to

the target, and x = Q2/(2Mν) the Bjorken scaling

variable (ν is the energy transfer and M the nucleon

mass). The variable Q2 indicates the space-time scale

at which the nucleon is probed and x is interpreted in

the parton model as the fraction of nucleon momen-

tum carried by the struck quark.

Although spin structure functions are the basic

observables for nucleon spin studies, considering their

integrals taken over x is advantageous because of re-

sulting simplifications. More importantly, such inte-

grals are at the core of the relation dispersion formal-

ism. Relation dispersions relate the integral over the

imaginary part of a quantity to its real part. Express-

ing the imaginary part in function of the real part

using the optical theorem yields sum rules. When

additional hypotheses are used, such as a low energy

theorem or the validity of Operator Product Expan-

sion (OPE), the sum rules relate the integral to a

static property of the target. If the static property

is well known, the verification of the sum rule pro-

vides a check of the theory and hypotheses used in

the sum rule derivation. When the property is not

known because e.g. it is difficult to measure directly,

sum rules can be used to access them. In that case,

the theoretical framework used to derived the sum

rule is assumed to be valid. Details on integrals of

spin structure functions and sum rules are given e.g.

in the review[1].

Several spin sum rules exists. We will focus on the

Bjorken sum rule[2] and the Gerasimov-Drell-Hearn

(GDH) sum rule[3]. In this paper, we will consider the

n-th Cornwall-Norton moments:

∫1

0

dxgN
1 (x,Q2)xn,

with N standing for proton or neutron, and write

the first moments as Γ N
1 (Q2)≡

∫1

0

dxgN
1 (x,Q2).

2 The generalized Bjorken and GDH

sum rules

The Bjorken sum rule[2] relates the integral over

(gp
1 − gn

1 ) to the nucleon axial charge gA. This re-

lation has been essential for understanding the nu-

cleon spin structure and establishing, via its Q2-

dependence, that Quantum Chromodynamics (QCD)

describes the strong force when spin is included. The

Bjorken integral has been measured in polarized deep

inelastic lepton scattering (DIS) at SLAC, CERN and

DESY and at moderate Q2 at Jefferson Lab (JLab),
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see Refs. [4—19]. In the perturbative QCD (pQCD)

domain (high Q2) the sum rule reads:

Γ p−n
1 (Q2)≡

∫1

0

dx(gp
1(x,Q2)−gn

1 (x,Q2)) =

gA

6

[

1−
αs

π
−3.58

α2
s

π2
−20.21

α3
s

π3
+ ...

]

+

∞
∑

i=2

µp−n
2i (Q2)

Q2i−2
, (1)

where αs(Q
2) is the strong coupling strength. The

bracket term (known as the leading twist term) is

mildly dependent on Q2 due to pQCD soft gluon ra-

diation. The other term contains non-perturbative

power corrections (higher twists). These are quark

and gluon correlations describing the nucleon struc-

ture away from the large Q2 (small distances) limit.

The generalized Bjorken sum rule has been de-

rived for small distances. For large distances, in the

Q2
→ 0 limit, one finds the generalized GDH sum

rule. The sum rule was first derived at Q2 = 0:∫
∞

ν0

σ1/2(ν)−σ3/2(ν)

ν
dν =−

2π2ακ2

M 2
t

, (2)

where ν0 is the pion photoproduction threshold, σ1/2

and σ3/2 are the helicity dependent photoproduction

cross sections for total photon plus target helicities

1/2 and 3/2, κ is the anomalous magnetic moment of

the target while S is its spin and Mt its mass. α is

the fine structure constant.

Replacing the photoproduction cross sections by

the electroproduction ones generalized the left hand

side of Eq. (2) to any Q2. Such generalization depends

on the choice of convention for the virtual photon flux,

see e.g. Ref. [1]. X. Ji and J. Osborne[20] showed that

the sum rule itself (i.e. the whole Eq. (2)) can be

generalized as:

8

Q2

∫x−

0

g1dx = s1(0,Q2), (3)

where S1(ν,Q2) is the spin dependent Compton am-

plitude. This generalization of the GDH sum rule

makes the connection between the Bjorken and GDH

generalized sum rules evident: GDH=
Q2

8
×Bjorken.

The connection between the GDH and Bjorken

sum rules allows us in principle to compute the mo-

ment Γ1 at any Q2. Thus, it provides us with a choice

observable to understand the transition of the strong

force from small to large distances.

3 Experimental measurements of the

first moments

Results from experimental measurements from

SLAC[6], CERN[8], DESY[9] and JLab[10—19] of the

first moments are shown in Fig. 1.
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Fig. 1. Experimental data from SLAC, CERN, DESY and JLab at low and intermediate Q2 on Γ p
1 (left), Γ n

1

(center) and Γ p−n
1 (right).

There is an excellent mapping of the moments

at intermediate Q2 and enough data points a low

Q2 to start testing the Chiral Perturbation Theory

(χPT ), the effective theory strong force at large dis-

tances. In particular, the Bjorken sum is important

for such test because the (p-n) subtraction cancels

the ∆1232 resonance contribution which should make

the χPT calculations significantly more reliable[21].

The comparison between the data at low Q2 and χPT

calculations[22, 23] can be seen more easily in the insert

in each plot of Fig. 1. The calculations assume the

Γ1 slope at Q2=0 from the GDH sum rule prediction.

Consequently, χPT calculates the deviation from the

slope and this is what one should test. A meaning-
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ful comparison is provided by fitting the lowest data

points using the form Γ N
1 =

κ2
N

8M 2
Q2 + aQ4 + bQ6...

and compare the obtained value of a to the values

calculated from χPT . Such comparison has been car-

ried out for the proton, deuteron[16] and the Bjorken

sum[18]. These fits point out the importance of inclu-

ding a Q6 term for Q2 < 0.1 GeV2. The χPT calcu-

lations seems to agree best with the measurement of

the Bjorken sum, in accordance with the discussion

in[21]. Phenomenological models[24, 25] are in good

agreement with the data over the whole Q2 range.

4 The strong coupling at large dis-

tances

A primary goal of the JLab experiments was to

map precisely the intermediate Q2 range in order

to shed light on the transition from short distances

(where the degrees of freedom pertinent to the strong

force are the partonic ones) to large distances where

the hadronic degrees of freedom are relevant to the

strong force. One feature seen on Fig. 1 is that the

transition from small to large distances is smooth,

e.g. without sign of a phase transition. This fact can

be used to extrapolate the definition of the strong

force effective coupling to large distances. Before dis-

cussing this, we first review the QCD coupling and

the issues with calculating it at large distances.

In QCD, the magnitude of the strong force is given

by the running coupling constant αs. At large Q2, in

the pQCD domain, αs is well defined and is given by

the series:

µ
∂αs

∂µ
= 2β(αs) =−

β0

2π

α2
s −

β1

4π
2
α3

s −
β2

64π
3
α4

s − ..., (4)

where µ is the energy scale, to be identified to Q.

The first terms of the β series are: β0 = 11−
2

3
n with

n the number of active quark flavors, β1 = 51−
19

3
n

and β2 = 2857−
5033

9
n+

325

27
n2. The solution of the

differential equation 4 is:

αs(µ) =
4π

β0 ln(µ2/Λ2
QCD)

[

1−
2β1

β2
0

ln
[

ln(µ2/Λ2
QCD)

]

ln(µ2/Λ2
QCD)

+

4β2
1

β4
0 ln2(µ2/Λ2

QCD)
×

(

(

ln
[

ln(µ2/Λ2
QCD)

]

−

1

2

)2

+
β2β0

8β2
1

−

5

4

)

]

.

(5)

Eq. (5) allows us to evolve the different experimental

determinations of αs to a conventional scale, typi-

cally M 2
z0

. The agreement between the αs obtained

from different observables demonstrates its univer-

sality and the validity of Eq. (4). One can obtain

αs(M
2
z0

) with doubly polarized DIS data and assum-

ing the validity of the Bjorken sum. Solving Eq. (1)

using the experimental value of Γ p−n
1 , and then using

Eq. (5) provides αs(M
2
z0

).

Eq. (5) leads to an infinite coupling at large dis-

tances, when Q2 approaches Λ2
QCD. This is not a con-

ceptual problem since we are out of the validity do-

main of pQCD on which Eq. (5) is based. But since

data show no sign of discontinuity or phase transi-

tion when crossing the intermediate Q2 domain, one

should be able to define an effective coupling αeff
s at

any Q2 that matches αs at large Q2 but stays finite

at small Q2.

The Bjorken Sum Rule can be used to define

αeff
s at low Q2. Defining αeff

s from a pQCD equa-

tion truncated to first order (in our case Eq. (1):

Γ p−n
1 ≡

1

6
(1−αs,g1

/π)), offers advantages. In particu-

lar, αeff
s does not diverge near ΛQCD and is renormal-

ization scheme independent. However, αeff
s becomes

dependent on the choice of observable employed to

define it. If Γ p−n
1 is used as the defining observable,

the effective coupling is noted αs,g1
. Relations, called

commensurate scale relations[26], link the different ef-

fective couplings so in principle one effective coupling

is enough to describe the strong force and the the-

ory retains its predictive power. These relations are

defined for short distances and whether they extrap-

olate to large distances remains to be investigated.

The choice of defining the effective charge with

the Bjorken sum has many advantages: low Q2 data

exist and near real photons data from JLab is be-

ing analyzed[27, 28]. Furthermore, sum rules constrain

αs,g1
at both low and large Q2, as will be discussed

in the next paragraph. Another advantage is that,

as discussed for the low Q2 domain, the simplifica-

tion arising in Γ p−n
1 makes a quantity well suited to

be calculated at any Q2[21]. These simplifications are

manifest at large Q2 when comparing the validities of

the Bjorken and Ellis-Jaffe sum rules. It also simpli-

fies Lattice QCD calculations in the intermediate Q2

domain. Finally, it may be argued that αs,g1
might be

more directly comparable to theoretical calculations

than other effective couplings extracted from other

observables: part of the coherent response of the nu-

cleon is suppressed in the Bjorken sum, e.g. the ∆ re-

sonance, so the non-resonant background, akin to the

pQCD incoherent scattering process, contributes es-

pecially importantly to the Bjorken sum. This
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argument is reinforced if global duality works, a cre-

dible proposal since the ∆ resonance is suppressed.

The effective coupling definition in terms of pQCD

evolution equations truncated to first order was pro-

posed by Grunberg[29]. Grunberg’s definition is meant

for short distances but one can always extrapolated

this definition and see how the resulting coupling

compares to calculation of αs at large distances. Us-

ing Grunberg’s definition at large distances entails in-

cluding higher twists in αs,g1
in addition to the higher

terms of the pQCD series.
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Fig. 2. Effective couplings extracted from dif-

ferent observables, see text for details. The

gray band indicates αs,g1
extracted from the

pQCD expression of the Bjorken sum at lead-

ing twist and third order in αs. The values of

αs,g1
/π extracted using the GDH sum rule is

given by the red dashed line.

It is common to fold the dynamics due to forces

(here the Higher Twists) into an effective parameter

so that the particle can be treated as free. It is in-

teresting to review quickly the characteristics of such

effective parameters, e.g. in the field of quantum elec-

tronics. There, near the energy extrema of electrons

moving in a crystal, the effects of external forces ap-

plied to the crystal are folded into effective masses

and the electron motions can be described using the

free Schrodinger equation. Then, the (effective) mass

of an electron becomes a tensor m∗

ij (that depends

on the electron energy) rather than a scalar since the

crystal lattice is not isotropic and the total acceler-

ation depends on the lattice forces. m∗

ij depends on

the material and, near an energy maximum, m∗

ii is

negative. Holes also have effective masses of opposits

signs as for electrons. Effective masses are useful to

determine quantities of interest of a material, such

as the quantum state densities, the speed of electric

signals. or the surface of isoenergy. This illustrates

the relevance of effective parameters, but also that

we should not be shocked if our effective couplings

depends on reactions or are negative.

Effective couplings have been extracted from dif-

ferent observables, see Fig. 2. Values of αs,g1
/π ex-

tracted from the world data on the Bjorken sum at

Q2 = 5 GeV2[7] and from JLab data[10, 18] have been

compared using the commensurate scale relations[30]

to αs,τ extracted from the OPAL data on τ decay[26],

and αs,GLS extracted using the Gross-Llewellyn Smith

sum rule[31] and its measurement by the CCFR

collaboration[32]. There is good agreement between

αs,g1
, αs,F3

and αs,τ .

The GDH and Bjorken sum rules can be used to

extract αs,g1
at small and large Q2 respectively[30].

This, together with the JLab data at intermediate

Q2, provides for the first time a coupling at any Q2.

A striking feature of Fig. 2 is that αs,g1
becomes scale

invariant at small Q2. This was predicted by a num-

ber of calculations and it is known that color confine-

ment leads to an infrared fixed point[33], but it is the

first time it is seen experimentally. A fit of the αs,g1

has been performed and is shown on Fig. 3 (plain

black line).
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Fig. 3. The effective coupling αs,g1
compared

to αs calculations.

There are several techniques used to predict αs at

small Q2, e.g. lattice QCD, solving the Schwinger-

Dyson equations, or choosing the coupling in a con-

stituent quark model so that it reproduces hadron

spectroscopy. However, the connection between these
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αs is unclear, in part because of the different ap-

proximations used. In addition, the precise rela-

tion between αs,g1
(or any effective coupling defined

using[29] or Ref. [26]) and these computations is un-

known. Nevertheless, one can still compare them to

see if they share common features. In Fig. 3, αs,g1

extracted from JLab data, its fit, and its extrac-

tion using the Burkert and Ioffe[24] model to obtain

Γ p−n
1 are compared to αs calculations. The meth-

ods used are solving the Schwinger-Dyson equations

(Top left: Cornwall[34]; Top right: Bloch[35]; Bottom

left: Maris-Tandy[37],Fischer, Alkofer, Reinhardt and

Von Smekal[38], and Bhagwat et al.[39]), αs used in

a quark constituent model (Godfrey-Isgure[36]) and

Lattice QCD[40] (bottom right). The calculations and

αs,g1
present a similar behavior. Some calculations, in

particular the lattice one, are in excellent agreement

with αs,g1
.

These works show that αs is scale invariant (con-

formal behavior) at small and large Q2 (but not in the

transition region between the fundamental descrip-

tion of QCD in terms of quarks and gluons degrees

of freedom and its effective one in terms of baryons

and mesons). The scale invariance at large Q2 is the

well known asymptotic freedom. The conformal be-

havior at small Q2 is essential to apply a property

of conformal field theories (CFT) to the study of

hadrons: the Anti-de-Sitter space/Conformal Field

Theory (AdS/CFT) correspondence of Maldacena[41],

that links a strongly coupled gauge field to weakly

coupled superstrings states. Perturbative calcula-

tions are feasible in the weak coupling AdS the-

ory. They are then projected on the AdS bound-

ary, where they correspond to the calculations that

would have been obtained with the strongly cou-

pled CFT. This opens the possibility of analytic non-

perturbative QCD calculations[42].

5 Summary and perspectives

We discussed the JLab data on moments of spin

structure functions, in particular at large distances

where we compared them to χPT , the strong force

effective theory at large distances. The smoothness of

Q2-dependence of the moments when transiting from

perturbative to the non-perturbative domain allows

to extrapolate the definitions of effective strong cou-

plings from short to large distances. Thanks to the

data on nucleon spin structure and to spin sum rules,

the effective strong coupling αs,g1
can be extracted

in any regime of QCD. The question of comparing

it with theoretical calculations of αs at low Q2 is

open, but such comparison exposes a similarity be-

tween these couplings. Apart for the parton-hadron

transition region, the coupling shows that QCD is ap-

proximately a conformal theory. This is a necessary

ingredient to the application of the AdS/CFT cor-

respondence that may make analytical calculations

possible in the non-perturbative domain of QCD.
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