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Abstract The beam trajectory in the first deflecting magnet of “Rhodotron” TT200 has been analyzed

precisely by both optical and simulation methods. We found discrepancies between these two methods at the

order of (10−3) for the slit distance and deflecting radius and at the order of (10−4) for the magnetic flux

density. The main goal of the paper is beam focusing, considering the angular and momentum dispersion of

the particles for the magnet designed by ANSYS.
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1 Introduction

“Rhodotron”[1, 2] is an electron accelerator with

industrial, medical and food irradiation applications.

This kind of accelerator has a unique particle tra-

jectory, neither straight like “Linac” nor circular like

“Cyclotron”. The electrons are accelerated by the

electric field produced in a coaxial cavity. After each

pass, the electrons are sent back to the cavity to be

re-accelerated again by the deflection magnets. The

energy of the beam is increased by 1 MeV per each

pass. These magnets are not only important for de-

flecting the beam into the cavity center, but are also

important to prevent beam divergence.

In this paper, the first deflecting magnet is stud-

ied precisely including its focusing properties and the

best geometry of the magnet is also investigated to in-

crease the focusing of the beam. In addition, the sim-

ulation results of the beam trajectory by ANSYS11

are included to evaluate the analytical results.

In the next section, considering the fringing field

and the effective beam trajectory, the precise values

of the deflection radius, magnetic flux density and

the real beam trajectory are calculated. In sections 3

and 4 the horizontal focusing of the magnet is stud-

ied for the angular and rigidity dispersion respectively

including the simulation results.

2 Edge effects (fringing field)

Assuming that the magnetic field lines are in the

−y direction, to calculate the magnetic flux density,

the bending radius r must be determined considering

the fringing field effect. As shown in Fig. 1, consider-

ing the effective field trajectory and the outer cavity

radius R, the bending radius can be calculated by

r=R tan9◦/cos9◦.

In “Rhodotron” one beam orbit has a length

equal to the RF wavelength λRF, therefore we have

2R +
1

4
λRF = λRF. From Fig. 1 we can find out

R = 1.04 m and r = 0.167 m. Also from Fig. 1,

the effective field boundary z∗, and x-displacement

of the optical center ∆x, can be calculated by the

two following expressions[3]:

z∗ =−zb+

∫
zb

za

By(0,0,z)

BG
dz=−I1G/2 , (1)

∆x=−
I2G

2

4r cos3ϕ
, (2)

in which By is the magnetic flux density in the y di-

rection as a function of z, B is the effective magnetic
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Fig. 1. The real and effective beam trajectories, the displacement of the effective and real optical axis and

the beam entering angles.

flux density and ϕ= 9◦ is the angle between the beam

and the vertical direction at the effective field boun-

dary (the incident beam angle at the effective boun-

dary is 81◦). The parameters B, za and zb are speci-

fied in Fig. 3(b). According to the geometry of the de-

signed magnet, for gap height G= 5 cm, the extracted

values of I1 and I2 are −0.92 and −6.3 respectively,

which will give z∗ = 2.3 cm and ∆x= 2.5 cm[3]. From

Fig. 1 the entering angle of the real beam trajectory
(

π

2
−ψ

)

and the distance between the two slits s are

89◦ and 33.4 cm respectively. The expected magnetic

flux density is calculated by

B=

√

E2
k +2Ekm0c2

qerc
, (3)

where Ek is the electron kinetic energy, qe is the elec-

tric charge and c is the light velocity. For a refer-

ence electron, we have the kinetic energy equal to

1 MeV, m0c
2 = 0.511 MeV, electric charge equal to

−1.6×10−19 C[4]. Therefore, from Eq. (3) the mag-

netic flux density will be equal to 0.0284 T.

Fig. 2. The core and its 4 related coils of the

magnet designed by ANSYS.

Fig. 3. (a) Distribution of the magnetic flux

density inside the gap space obtained from

ANSYS simulation according to the designed

geometry, (b) distribution of the magnetic

flux density along the “z” axis. The magnet

boundary is at z = 0 and the effective bound-

ary is at z =2.
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Applying the 636 Amp turn to the designed coils

by ANSYS (Fig. 2) will give us the magnetic flux den-

sity B = 0.0275 T inside the gap space as presented

in Fig. 3(a). After analyzing the 1 MeV electron tra-

jectory, we obtain the parameters

(

π

2
−ψ

)

, r and s

as 93.4◦, 16.87 cm and 33.7 cm respectively. In ad-

dition, Fig. 3(b) shows the simulation results of B

as a function of z and then from Eq. (1) we obtain

z∗ ≈ 2 cm.

3 Horizontal focusing of the angular

dispersion

The different propagating directions of the parti-

cles in the beam in a homogeneous magnetic sector

field will cause the beam to diverge. To evaluate this

divergence, the method discussed in Ref. [3] is used.

The transfer matrix and the equations of motion for

two particles with incoming deviation angles of α1

and α′

1 =α1 +δ from the vertical direction, as shown

in Fig. 4, are presented as follows:




D2

a2



=





cosθ r sinθ

−r−1 sinθ cosθ









D1

a1



 , (4)

D(θ) = D1 cosθ+rδ sinθ+ · · ·

tan[α2(θ)] = −(D1/r)sinθ+α1 cosθ+ · · ·

tan[α′

2(θ)] = −(D1/r)sinθ+(α1 +δ)cosθ+ · · ·

, (5)

where θ is the bending angle of the magnetic sector

field. Since θ = π, the first equation of (5) will be

changed to D2 =D(π) =−D1, where D1 and D2 are

the incoming and outgoing beam diameters.

Fig. 4. Two particle trajectories entering a

magnetic sector field with bending angle, θ.

If α and x1 are deviation angle and beam di-

ameter at entrance slit, α(θ) and x2 are the

deviation angle and beam diameter at exit slit.

From the second equation of (5) we have a2 =

tan[α′(π)]−tan[α′′(π)] =−(α′

2−α2) =−δ. This means

that the deviation angle will remain intact and in ad-

dition it shows that the focusing is just for small devi-

ation angles. As obtained in the previous section, the

beam enters the magnet at an angle of ψ = 1◦ from

the vertical direction. The maximum angular disper-

sion of the beam particles is 0.14◦[5]. Therefore, one

can conclude that the outgoing beam is focused if the

angular dispersion is very small.

The simulation results are presented in Fig. 5. It

shows the ratio of D1/D2 in terms of the deviation

angle ψ. For deviation angles less than 0.2◦ this ratio

is 1.001 and for deviations larger than 0.4◦, this ratio

will rise.

Fig. 5. The ratio of the incoming beam diame-

ter, D1 and outgoing, D2 in terms of the de-

viation angle. This ratio for deviation angles

less than 0.2◦ is almost 1.

4 Horizontal focusing for the momen-

tum dispersion

The transfer matrix for the case of particles with

different rigidities (Fig. 6) may be written as follows:











x2

a2

∆











=











cosθ 0 r(1−cosθ)

0 cosθ 0

0 0 1





















x1

a1

∆











, (6)

that we have ∆=
dr

r
6= 0.

Defining Mx as the lateral magnification and ac-

cording to the definition of the focusing condition[3]

we must have ∆r(1−Mx) 6DMx that D is the beam

diameter. Substituting x1 and x2 with D and DMx

respectively as incoming and outgoing beam diame-

ters in Eq. (6), we will have −D+ 2r∆max = DMx.

Solving the equation M 2 + 2M − 1 = 0 will lead to
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Mx = −2.41. Finally we can express the focusing

condition as a function of the momentum dispersion:
P1

P0

= 1+0.707×
D

r
. The beam has an “emittance”

of 5×10−3 cm·rad and therefore the entering beam

diameter is about 1.34 cm. Hence, one can expect

that for a focused beam, the outgoing beam diameter

has to be less than 3.23 cm. The calculations show

that for the energy range of 0.98—1.05 MeV (the ex-

perimental beam measurements specify some smaller

energy range, especially through the first pass[6]) the

focusing condition will be satisfied. The magnet fo-

cusing power may be written as −
1

∆max

= 9.5×10−3.

Fig. 6. Two particle trajectories with different

momenta, P0 and P1. The width of the beam

DMx at the exit slit has to be at least equal

to ∆r(1−Mx).

Figure 7 shows the simulation results of the outgo-

ing beam diameter for particles with an energy range

of 0.94—1.05 MeV. Comparing these results with the

results obtained from the calculation method, one can

see that even for such a wide energy range the focu-

sing conditions are fulfilled.

Fig. 7. Beam diameter at the exit slit in terms

of the particle energy range.

5 Conclusion

We analyzed the beam convergence in the first de-

flection magnet of “Rhodotron” TT200 by two meth-

ods. The discrepancies between the simulation and

the calculation are too small to be considered. For

example, the discrepancies for the beam Gyro-radius

and the two slits are 0.17 cm and 0.3 cm respectively.

According to the experimental measurements of the

energy spectra of the beam, the results presented in

sections 3 and 4 clarify that the designed magnet

satisfactorily focuses the beam during the deflection

without any particle loss.

We have to mention that, to increase the beam

focusing especially for the magnets of the next passes

(because of the wider energy ranges[6]), some modi-

fications can be made to the magnet geometry; this

is still under study and will be presented in a future

article.
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