
CPC(HEP & NP), 2009, 33(1): 58—64 Chinese Physics C Vol. 33, No. 1, Jan., 2009

Investigation of a method to calculate spontaneous

radiation spectra from relativistic electrons in

undulators

CHEN Ming-Zhi(�´�) HE Jian-Hua(Ûïu)1)

(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800§China)

Abstract Undulators are key devices to produce brilliant synchrotron radiation at the synchrotron radiation

facilities. In this paper we present a numerical computing method, including the computing program that

has been developed to calculate the spontaneous radiation emitted from relativistic electrons in undulators by

simulating the electrons’ trajectory. The effects of electron beam emittance and energy spread have also been

taken into account. Comparing with other computing methods available at present, this method has a few

advantages with respect to several aspects. It can adopt any measured or arbitrarily simulated 3D magnetic

field and arbitrary electron beam pattern for the calculation and it’s able to analyze undulators of any type of

magnetic structure. It’s expected to predict precisely the practical radiation spectrum. The calculation results

of a short period in-vacuum undulator and an Elliptically Polarized Undulator (EPU) at Shanghai Synchrotron

Radiation Facility (SSRF) are presented as examples.
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1 Introduction

Synchrotron Radiation (SR) has become a very

powerful tool for the researches in many fields since

the 1990s[1]. Undulators, which consist of peri-

odic magnetic arrays and can produce brilliant syn-

chrotron radiation, have been widely used at the 3rd

generation SR facilities. When relativistic electrons

pass through the periodic magnetic field of an undula-

tor, they oscillate in the transverse direction and emit

partly coherent electromagnetic radiation. Due to the

interference of radiation in different periods, the un-

dulator radiation becomes quasi-monochromatic and

its brightness is greatly enhanced.

In the last thirty years, the theory of undulator ra-

diation has been well developed and several methods

to calculate the spectrum of undulator radiation have

been established[2—8]. A few computing codes based

on those methods, such as SPECTRA[3], XOP[4—7]

and SRW[8], have been created to understand the

properties of undulator radiation and to help the de-

sign of undulators. Some of them use directly the the-

oretical formulae for the calculation (XOP), and some

others (e.g. SPECTRA) simulate the electron trajec-

tory and have more accurate results. There were also

continuous efforts done by a few research groups in

China[9—14]. These activities included the software

development for the calculation of radiation distribu-

tion produced by one-dimensional linearly polarized

magnetic fields[9], the numerical simulation and a sim-

ulation code to investigate the influence of emittance,

energy spread, off-axis and oblique axis on the spon-

taneous emission spectra in the Optical Klystron of

NSRL[11] and the simulation study of the influence of

magnetic field errors on the undulator radiation[14].

Meanwhile, the manufacturing technology of undula-

tors made also great progress. Mini-gap undulators

have been widely used to produce brilliant high har-

monics radiation, and undulators with various mag-

netic structures have been designed to produce the

desired features of radiation. It is becoming feasible

to fabricate the undulator with very small magnetic

errors, so to achieve the performance as designed.

This also enhanced the request for a precise calcula-

tion of the undulator radiation specific to various ex-

perimental demands. The existing computing codes
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are not sufficient for the calculation of undulator ra-

diation with any magnetic structures, which would be

useful for evaluating the effect of magnetic field errors

on the undulator radiation.

In this paper, we propose a computing method

aiming at the precise calculation of the undulator

radiation spectrum. The related computing pro-

gram, named Undulator Radiation Computing Pro-

gram (URCP), is based on electrodynamics[15] and

can adopt any 3D magnetic fields in the calculation.

Different from other computing codes, such as SPEC-

TRA and XOP, the Variation of the Magnet field in-

tensity in the Transverse direction (VMT) has been

taken into account in URCP. VMT can affect seri-

ously the undulator radiation in certain situations.

To illustrate the usage of URCP, two types of undula-

tors used at SSRF have been taken as the calculation

examples and their results are compared with those

of other codes.

2 Basic theory and calculation

method

2.1 Single electron radiation

According to the theory of electrodynamics, an

electron emits an electromagnetic wave while it is ac-

celerated. The equations of the radiation field can be

expressed as:

E(x,t) =
e

4πε0cR

{

n−β

γ2(1−β ·n)3R2
+

n×

[

(n−β)×
dβ

dt

]

(1−n ·β)
3

}

∗

,

B =
1

c
×n×E,

(1)

where ε0, c, e, β, R, n are the permittivity of the vac-

uum, the light velocity in vacuum, the charge of the

electron, the relative velocity of the moving electron,

the distance from electron to the observation position,

and the unit vector from the electron to the observa-

tion position, respectively. The symbol * means that

retarded form has to be taken.

Then, the single electron radiation power density

per unit solid angle is given by the equation:

dP

dΩ
= ε0c

∫
∞

−∞

|E(t)|2dt=
e2γ4

2π
2ε20c2

×

∫
∞

−∞

[

(γβ̇x)2 +(γβ̇y)
2

D3
−

4(ξγβ̇x +ψγβ̇y)
2

D5
+

4c2(ξ2 +ψ2)

R2D5

]2
dt′

R2
, (2)

with

D= 1+ξ2 +ψ2,

ξ= γnx−γβx,

ψ= γny−γβy,

t′ = t−
R

c
,

γ= Ee/mc
2.

(3)

The Fourier transform of the Electric field intensity

can be written as:

E(t) =

∫
∞

−∞

E(ω)exp(−iωt)dω,

E(ω) =
1

2π

∫
∞

−∞

E(t)exp(iωt)dt.

(4)

Then we can obtain the total radiation power per unit

solid angle by integrating over t in Eq. (2):

dI

dΩ
=

∫
∞

−∞

dP (t)

dΩ
dt= ε0cR

2

∫
∞

−∞

[E2]
∗

dt=

4πε0cR
2

∫
∞

0

|E(ω)|
2
dω . (5)

Taking the derivatives with respect to ω on both

sides, we have:

d2I

dωdΩ
= 4πε0cR

2 |E(ω)|
2
. (6)

If R is much longer than the undulator length, we

can apply the far-field approximation to simplify the

equation of radiation intensity per unit solid angle:

d2I

dωdΩ
=

e2ω2

16π
3c

∣

∣

∣

∣

∫ +∞

−∞

n×(n×β)×

exp

[

+iω

(

t′−n×r(t′)

c

)]

dt′
∣

∣

∣

∣

2

. (7)

Most of the radiation characteristics can be cal-

culated by using Eq. (2) and (7).

2.2 The effect of multi-electrons

In the storage ring of synchrotrons, electrons are

confined into separate electron bunches. Fig. 1 shows

the coordirate system of the j-th electron in an

eletron bunch. By using Eq. (7), the radiation spec-

trum generated by an electron bunch with Ne elec-

trons can be written as:

d2I

dωdΩ

∣

∣

∣

∣

Nee

=
e2ω2

16π
3c

∣

∣

∣

∣

Ne
∑

j=1

∫ +∞

−∞

n×(n×βj)×

exp[+iω(t′−n×r(t′)/c)]dt′
∣

∣

∣

∣

2

, (8)

where βj and Rj(t) are the velocity and position vec-

tor of the j-th electron at time t, respectively.
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Fig. 1. Scheme of the effect of multi-electrons.

In principle, the interferential effects of radiation

generated from different electrons are taken into ac-

count by this equation. However, the electrons in an

electron bunch are not confined tight enough to cause

observable interference effect of X-rays emitted from

different electrons. Therefore the radiation intensity

of an electron bunch can be calculated by adding to-

gether the radiation intensity of each electron inside

the electron bunch:

d2I

dωdΩ

∣

∣

∣

∣

inc

=

Ne
∑

j=1

d2I

dωdΩ

∣

∣

∣

∣

j

. (9)

3 Numerical computing method

Given the parameters of a particle’s velocity and

trajectory, the radiation power density and spectrum

can be obtained through Eq. (2) and (7).

The equation of motion for an electron in an elec-

tromagnetic field can be expressed as:

d2R(t′)

dt2
=−

e

γm
(Ef +B×v(t′)) , (10)

where Ef , B, R(t′) and v(t′) are external electric

field strength, external magnetic field strength, the

electron position and the electron velocity at time t′,

respectively.

Considering v(t′) =
dR(t′)

dt
and letting

dv(t′)

dt
=

f(t′,R,v), we can derive the following equations from

Eq. (10) through the Runge-Kutta method[16]:










Rj+1 = Rj+1 +v∆t+
∆t2

6
(l1 + l2 + l3),

vj+1 = vj +
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6
(l1 +2l2 +2l3 + l4),

(11)
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l1 = f(t′j ,Rj ,vj),

l2 = f

(

t′j +
∆t′

2
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∆t′

2
vj ,vj +

∆t′

2
l1

)

,

l3 = f

(

t′j +
∆t′

2
,Rj +

∆t′

2
vj +

∆t′2

4
l1,vj +

∆t′

2
l2

)

,

l4 = f

(

t′j +∆t′,Rj +∆t′vj +
∆t′2

2
l2,vj +∆t′l3

)

.

(12)

Given the initial electron position R(0) and ve-

locity v(0), the electron trajectory and velocity can

be derived from Eq. (12) with the parameters of the

undulator magnetic field.

For numerical computing, Eq. (2) and (7) are

transformed into discrete equation:

dP

dΩ
=

∫
∞

−∞

[

(γβ̇x)
2 +(γβ̇y)

2

D3
−

4(ξγβ̇x +ψγβ̇y)
2

D5
+

4c2(dξ2 +ψ2)

R2D5

]

dt′

R2
=

e2γ4

2π
2ε20c2

N
∑

j=1

[(

P1(j)

D[j]3
−
P2(j)

D[j]5
+

P3(j)

R2D[j]5

)

×

(t′[j]− t′[j−1])

]

, (13)

with

P1[j] = γ2
(

β̇x [j]
2
+ β̇y [j]

2
)

,

P2[j] = 4γ2

[

(

ξ [j] β̇x [j]
)2

+
(

Ψ [j] β̇y [j]
)2

]

,

P3[j] = 4c2(ξ [j]
2
+ψ [j]

2
),

D[j] = 1+ξ[j]2 +ψ[j]2,

ξ[j] = γnx−γβx[j],

ψ[j] = γny−γβy[j],

(14)

and

d2I

dωdΩ
=

e2ω2

16π
3c

∣

∣

∣

∣

∫ +∞

−∞

n×(n×β)×

exp[+iω(t′−n×r(t′)/c)]dt′
∣

∣

∣

∣

2

=

e2ω2

16π
3c

3
∑

k=1

{[ N
∑

j=2

Fk[j] cos(FF [j])(t′[j]− t′[j−1])

]2

+

[ N
∑

j=2

Fk[j] sin(FF [j])(t′[j]− t′[j−1])

]2}

, (15)

with

F1[j] = sin2 θ ·cos2ϕ ·βx[j]+sin2 θ ·sinϕ ·cosϕ ·βy[j]+

sinθ ·cosθ ·cosϕ ·βz[j]−βx[j],

F2[j] = sin2 θ ·sinϕ ·cosϕ ·βx[j]+sin2 θ ·sin2ϕ ·βy[j]+

sinθ ·cosθ ·sinϕ ·βz [j]−βy[j],

F3[j] = sinθ ·cosθ ·cosϕ ·βx[j]+

sinθ ·cosθ ·sinϕ ·βy [j]+cos2 θβz[j]−βz[j],

FF [j] =ω

[

t′[j]−

(sinθ ·cosϕ ·x[j]+sinθ ·sinϕ ·y[j]+cosϕ ·z[j])

c

]

.

(16)
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Then we can get the radiation intensity of a sin-

gle electron per unit solid angle and unit frequency

by using the electron motion trajectory and velocity

derived from Eq. (11) and (12). As Eq. (11) and (12)

can adopt arbitrary 3D magnetic field data, this nu-

merical method can adopt an arbitrary 3D magnetic

field.

For an accurate calculation, the effect of multi-

electrons in an electron bunch has to be taken into

account. Since the number of electrons in an electron

bunch is enormous, the Monte Carlo method is used

to deal with the effect of an electron bunch:

d2I

dωdΩ

∣

∣

∣

∣

Ne

=

M
∑

j=1

wj

d2I

dωdΩ

∣

∣

∣

∣

j

, (17)

where wj is the weight factor of the j-th electron,

which depends on the initial parameter of the j-

th electron and the distribution functions of both,

the electron beam energy spread and the emittance.

Given the initial parameters, the radiation intensity

of different electron bunch patterns can be derived

from Eq. (17).

4 Computing program

Based on the numerical computing method dis-

cussed above, the computing program URCP has

been written in Visual C++ 6.0. For convenience,

URCP has preset electron bunch data of Gaussian

pattern and magnetic field data of ideal undulators,

such as a conventional undulator, a helical undula-

tor, EPU. The data for an arbitrary magnetic field

and the electron bunch pattern have to be written

into data files in a prescribed form as input into the

URCP calculation.

Numerical computing will introduce truncation

errors into the calculation. In the URCP we try to

make the truncation errors negligible.

The key point is to calculate the phase term FF [j]

in Eq. (16) accurately. Assuming the rms errors of

FF [j] is ∆FF , the variation of the radiation inten-

sity caused by ∆FF can be estimated by[19]:

I = I0 exp(−∆FF 2) . (18)

To keep the calculation error of the radiation in-

tensity less than 1%, the calculation error of ∆FF

must be less than 0.1. In the case of X-rays, the or-

ders of magnitude of ω and t are generally between

1017—1020 and 10−9—10−8 s, respectively, so the pre-

cision of t and R should be up to 10−14 s and 10−10—

10−13 m, respectively. Thus, an accurate calculation

of the electron trajectory is requested. URCP uses

a fourth order Runge-Kutta method. While the step

length takes 10−4 m, the local truncation error would

be less than 10−20. In this way the URCP meets the

demand mentioned before, even for the calculation of

very high order of harmonics.

5 Examples calculated with URCP

A few typical examples have been taken to illus-

trate the usage and the function of the URCP. In the

calculation hereafter, unless specified explicitly, the

parameters of the electron beam was taken from the

designed parameters of the SSRF storage ring (Ta-

ble 1).

Table 1. Parameters of the SSRF storage ring.

natural emittance natural emittance βx,βy,ηx in
energy current

(mode 1) (mode 2)
coupling constant

middle of 6.5 m straight
energy spread

3.5 GeV 300 mA 3.9 nm·rad 11.2 nm·rad 60.01 3.6, 2.5, 0.11 m 0.0097

5.1 Typical undulator with ideal magnetic

field

A short period planar undulator is typically used

to produce a brilliant SR beam at various harmonics

to cover a wide photon energy range. The magnetic

field of a planar undulator usually lies in the vertical

direction (y- direction) and varies periodically along

the longitudinal direction (z- direction). Fig. 2 shows

the radiation spectrum of a planar undulator (U25)

which has 80 periods with a period length of 25 mm.

The magnetic field is assumed as an ideal magnetic

field with K=2.2565 (deflection parameter). In this

figure, the peak intensity decreases obviously and the

peak position slightly shifts to the low energy side due

to the effect of beam emittance and energy spread.

Fig. 2. Radiation spectrum of U25 (K=2.2565,
the 3-rd harmonic).

Some experiments, such as energy dispersive tech-

niques and extended X-ray absorption fine structure,
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prefer a broad bandwidth and fast energy turning.

For this purpose, U25 can be operated on tapered

mode to satisfy these requirements. Fig. 3 shows the

tapered mode of U25.

Fig. 3. Scheme of a tapered undulator.

The gap is assumed to be linearly tapered:

g(z) = g0+
dg

L
z , (19)

Where dg, L, z are the difference of the entrance and

exit magnetic gaps, undulator length, and the coor-

dinate along the undulator, respectively.

Then the relationship between the peak magnetic

field intensity B0 and z can be approximately ex-

pressed as[20]:

B0(z) = 2.983exp

[

−
g(z)

λu

(

5.068−1.52
g(z)

λu

)]

,

(20)

where λu is the period length.

The magnetic field distribution can be simply ex-

pressed as:

By =B0(z)sin

(

2π

λu

z

)

. (21)

Figure 4 is the simulation results of U25 under

tapered mode.

Figure 4 shows the on-axis flux angle density spec-

tra calculated by means of URCP and SPECTRA

with parameters shown under the figure. It is found

that the bandwidth becomes broader while increasing

the taper[7]. As shown in the figure, the difference be-

tween the results calculated by the two programs is

less than 3%. Fig. 5 shows the comparison of the ra-

diation spectra of U25 under planar mode calculated

by URCP and SPECTRA.

In the comparison, the same parameters have been

used and the Gaussian distribution beam pattern has

been adopted. The calculated curves match well with

each other. The difference of the peak flux density

given by the two programs is less than 3% and the ex-

act values are shown in Table 2. The minor difference

could be attributed to the different ways in treating

the electron beam emittance and energy spread[17].

The URCP uses a Monte Carlo method to simulate

the electron beam, while SPECTRA uses a convolu-

tion of the flux intensity with a distribution function.

Fig. 4. Centre flux angle density with different
tapers (g0=6 mm, dg=0.1, 0.5 mm).

Fig. 5. Radiation spectra calculated by URCP
and SPECTRA (U25 under planar mode).

In addition the URCP can adopt other electron

beam patterns, such as a uniform distribution pat-

tern, or add random noise to the patterns.

5.2 Undulator with quasi-arbitrary magnetic

field

Quasi-arbitrary magnetic field here means that all

Table 2. Comparisons between the calculations of URCP and SPECTRA (Parameters taken from U25 and
the storage ring mode 1 of SSRF).

harmonic peak flux density calculated by peak flux density calculated by

number URCP (1017photons/s/mrad2/0.1%BW∗) spectra (1017photons/s/mrad2/0.1%BW)

tapered mode 1 4.19 4.30

(dg=0.1 mm) 5 0.728 0.750

planar mode 1 4.97 5.09

5 2.24 2.28

∗ BW means bandwidth.
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three components of the magnetic field B in Carte-

sian coordinates are considered, but the value of B

only depends on the longitudinal position. VMT is

ignored in this case. A typical EPU, which has 45 pe-

riods with a period length of 44 mm is selected as a

calculating example. We can simply write the on-axis

magnetic field as:

By = B0 sin

(

2π

λu

z

)

,

By = B0 cos

(

2π

λu

z

)

,

Bz = 0.

(22)

Figure 6 shows the radiation spectra of EPU. In

the case of a magnetic field with random errors, both

the horizontal and the vertical peak magnetic field

contribute a rms error of 0.5% to the ideal values.

In both cases, the effect of beam emittance and en-

ergy spread is included. Fig. 7 shows the comparison

of the results of URCP and SPECTRA in the EPU

case. The difference of the results obtained by the two

codes is less than 4%. The reason has been explained

in the previous section.

Fig. 6. Radiation spectra of EPU.

Fig. 7. Radiation spectra calculated by URCP
and SPECTRA (EPU under circle polarized
mode).

5.3 Undulators with arbitrary magnetic field

Besides the URCP, the other computer codes

available at present are based on a quasi-arbitrary

magnetic field. This approximation is suitable for

the occasion where the electron beam emittance is

small or the good field region of the undulator is

large enough. However, this approximation is not

well suited if the electron beam emittance is large.

Then the VMT could seriously affect the undulator

radiation and it should be taken into account in a

more accurate calculation.

For example, after the coordinate definition given

in Fig. 3, the magnetic field intensity distribution of

an EPU under linear polarization mode can be ex-

pressed as[21, 22]:

Bx(x,y,z) = 2B0α
2δxy ·sin(kuz),

By(x,y,z) = B0[1+α2 {δx2 +(2−δ)y2}·sin(kuz),

Bz(x,y,z) = 2B0αy ·cos(kuz),

(23)

where, B0 = 0.7 T, ku =
2π

λu

, α=
π

λu

and δ = 1 (tak-

ing λu = 44 mm) are the parameters of the undulator

magnetic structure.

Figure 8 shows the radiation spectra of the first

and the fifth harmonic under different electron beam

emittances based on the magnetic field pattern men-

tioned above. The solid lines and the dashed lines

show the spectrum with and without the effect of

VMT, respectively.

Fig. 8. Flux angle density spectra.

As shown in Fig. 8, if the effect of VMT is taken

into account, the peak flux density decreases and the

peak position shifts to the low energy side. From Ta-

ble 3, we can find that for increasing electron beam

emittance the effect of VMT on the radiation inten-

sity becomes more serious. The decrease of the radia-

tion intensity could be about 8% in the 5th harmonic.

So, considering the effect of VMT will improve the ac-

curacy of the undulator radiation calculation.

6 Comparisons with other codes

We have make the comparisons of XOP and

SPECTRA with URCP. XOP is based on an analytic
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Table 3. Peak flux density under different emittances.

harmonic natural emittance/ peak flux density (with VMT) peak flux density (without VMT)
number (nm·rad) (1017photons/s/mrad2/0.1%BW) (1017photons/s/mrad2/0.1%BW)

ratio

1 3.9 1.638 1.639 0.999
1 11.2 1.100 1.106 0.995
1 20.0 0.833 0.842 0.989
5 3.9 1.142 1.152 0.991
5 11.2 0.749 0.766 0.979
5 20.0 0.525 0.571 0.920

method. It can only calculate the basic properties

of various kinds of undulator sources for ideal elec-

tron trajectories (ideal magnetic field and perfect

injection)[6]. Both URCP and SPECTRA[8] can cal-

culate undulator radiation from analytic and simu-

lated parameters. SPECTRA can calculate undulator

spectra from a quasi-arbitrary magnetic field without

VMT. URCP can deal with an arbitrary magnetic

field with VMT and extends the scope of calculation

significantly.

7 Discussion and conclusion

This paper introduces a computing method and

the related program URCP which can calculate most

properties of the undulator radiation in arbitrary 3D

magnetic field cases. A comparison shows that the

calculating precision of the URCP is at the same level

with other computing codes for magnetic fields with-

out VMT. But the URCP can be adapted to more

complicated magnetic fields and give more practical

and accurate calculation results with large electron

emittance or off-axis radiation, by taking into account

the effect of VMT. URCP will be helpful for the de-

sign of novel undulators and can be applied to more

general cases.

URCP applies a Monte Carlo method to deal with

the effect of electron bunches. It is somewhat time

consuming, however, the calculation speed can be im-

proved further by optimizing the calculation method

in the future.

In conclusion, the development of the numeri-

cal method and the computer program URCP has

extended the capability of calculating undulator ra-

diation spectra. It will be a useful tool for studying

the characteristics of undulator radiation and for the

design, optimization and test of undulators with bet-

ter accuracy. So far the experimental measurements

for both, radiation spectra and magnetic fields of

undulators, were only done in rare cases. Accurate

experimental data are still needed fully demonstrate

the accuracy of the calculations, which may help to

pave a way to the delicate usage of undulator radia-

tion spectra in the future.
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