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Cross sections for charmonia dissociation in collisions

with pions, rhos and kaons *
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Abstract We calculate the unpolarized cross sections for dissociation reactions of charmonia in collisions

with π, ρ and K in a potential that is derived from QCD. The reactions are governed by the quark-interchange

processes. The mesonic quark-antiquark relative-motion wave functions are determined by the central spin-

independent terms of the potential. The numerical wave functions and cross sections are parametrized. The

difference of transition amplitudes in the prior form and in the post form is explored by deriving and examining

the transition amplitudes of the one-gluon-exchange spin-spin term of the potential in the two forms. We

find that the post-prior discrepancy in meson-meson elastic scattering that is governed by quark-interchange

processes depends on the difference of quark or antiquark masses and of quark-antiquark spatial distributions

of the two mesons.
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1 Introduction

The observed J/ψ suppression in ultrarelativis-

tic heavy-ion collisions comes from the dissociation

of J/ψ in collisions with gluons, quarks and anti-

quarks in quark-gluon plasma[1, 2] as well as hadrons

in hadronic matter[3]. To identify J/ψ as a probe of

quark-gluon plasma[4] in a definite way the hadron-

charmonium dissociation processes must be well un-

derstood. Calculations of dissociation cross sections

are thus an important aspect in studying J/ψ physics.

Since the dissociation processes are governed by the

quark interchange mechanism, models based on the

mechanism have been developed to calculate the cross

sections[5—8].

In Ref. [8] the polarized cross sections for meson-

charmonium reactions qq̄ + cc̄ → qc̄ + cq̄ are calcu-

lated with a potential that is derived from perturba-

tive QCD and linear confinement. There the confine-

ment was limited to take place only between q and c̄

to form one charmed meson and between c and q̄ to

form another charmed meson. This is an approxima-

tion. The confinement also relates to q and c as well

as q̄ and c̄. Since unpolarized cross sections are used

in transport models of ultrarelativistic heavy-ion col-

lisions, in the present work we present the unpolarized

cross sections for π-charmonia, ρ-charmonia and K-

charmonia. The pions, rhos and kaons are dominant

meson species in hadronic matter produced in Au-

Au collisions at the Relativistic Heavy Ion Collider

energies.

A flavour rearrangement can happen in the pro-

cess of the quark (antiquark) interchange between two

scattering mesons. Gluon exchange is another process

which determines the meson-charmonium scattering.

The scattering is in the prior form shown in Fig. 1

when the gluon exchange takes place prior to the

quark (antiquark) interchange and in the post form

shown in Fig. 2 when the gluon exchange takes place

after the quark (antiquark) interchange. Meson-

charmonium scattering in the two forms may have

different cross sections, which is the so-called post-

prior discrepancy. We pay a particular attention to

the post-prior discrepancy that results from the use

of approximate quark-antiquark relative-motion wave

functions[9—11]. But in elastic scattering of ππ and

Kπ the discrepancy has been shown by numerical re-

sults to disappear[12, 13]. The cases are interesting

and we therefore give analytic formulas for transition

amplitudes of the reactions to explicitly exhibit the
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appearance or the disappearance of the post-prior dis-

crepancy. In the present work we use both the prior

form and the post form in contrast to Ref. [8] where

only the prior form was used.

In Section 2 we present formulas for cross sections

and transition amplitudes. The potential and wave

functions that are involved in the transition ampli-

tudes are given. In Section 3 numerical results for

cross sections, discussions and parametrizations for

cross sections are shown. In Section 4 the post-prior

discrepancy is investigated. In the last section is sum-

mary.

Fig. 1. “Prior” diagrams for the reaction A+
B −→ C + D. Solid (dashed) lines represent
quarks or antiquarks (gluons).

Fig. 2. The same as Fig. 1, except for “post” diagrams.

2 Formulas

We denote the energies of mesons A, B, C and

D by EA, EB, EC and ED, the three-dimensional

momenta by PA, PB, PC and PD, masses by mA,

mB, mC and mD, respectively. The Mandelstam

variables are s = (EA +EB)2 − (PA + PB)2 and t =

(EA−EC)2−(PA−PC)2. The cross section for meson-

charmonium scattering A(qq̄)+B(cc̄)→C(qc̄)+D(cq̄)

is[8, 14]:

σ(
√
s) =

1

32πs

|P ′(
√
s)|

|P (
√
s)|

∫
π

0

dθ|M(s,t)|2 sinθ , (1)

where θ is the angle between P and P ′, P and P ′

are the three-dimensional momenta of mesons A and

C in the center-of-momentum frame of the two initial

mesons, respectively. P and P ′ are related to the

Mandelstam variables s

|P (
√
s)|2 =

1

4s

{

[s−(m2
A +m2

B)]
2−4m2

Am
2
B

}

, (2)

|P ′(
√
s)|2 =

1

4s

{

[s−(m2
C +m2

D)]
2−4m2

Cm
2
D

}

. (3)

The transition amplitude M in the prior form is

Mprior = 4
√

EAEBECED〈ψqc̄|〈ψcq̄|(Vqc̄ +Vq̄c +

Vqc +Vq̄c̄)|ψqq̄〉|ψcc̄〉, (4)

and in the post form is

Mpost = 4
√

EAEBECED〈ψqc|〈ψcq|(Vqq +Vcc +

Vqc +Vq̄c̄)|ψqq〉|ψcc〉, (5)

where ψqq, ψcc, ψqc and ψcq are the wave functions of

the relative motion of quark and antiquark inside the

four mesons, respectively.

The unpolarized cross section

σunpol(
√
s) =

1

(2SA +1)(2SB +1)(2LB +1)
×

∑

SLBz

(2S+1)σ(S,LBz,
√
s), (6)

where SA(LA) and SB(LB) are the spin quantum num-

bers (orbital-angular-momentum quantum numbers)

of mesons A and B, respectively. σ(S,LBz,
√
s) is the

polarized cross section for the reaction channel with

the total spin S of the two initial mesons and the third

component LBz of the orbital angular momentum of

meson B, and is calculated with Eq. (1).

The potential involved in the transition ampli-

tude is the central spin-independent potential, i.e.,

the Buchmüller-Tye potential[15] plus spin-spin inter-

action

Vab (Q) =
λa

2
•

λb

2

16π2K

Q4
+

λa

2
•

λb

2

16π2

Q2

(

ρ(Q2)− K

Q2

)

−

λa

2
•

λb

2

16π2

25

sa
•sb

mamb

+
λa

2
•

λb

2

16π2λ

25Q
×

∫+∞

0

dx
d2v(x)

dx2
sin

(

Q

λ
x

)

sa
•sb

mamb

, (7)

where Q is the gluon momentum, K = 3/16π2α′

with the Regge slope α′ = 1.04 GeV−2, λ =
√

3b0/16π2α′ with b0 = 25/3, λa, sa and ma rep-

resent the Gell-Mann “λ-matrices”, spin and mass of
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constituent a, respectively. ρ(Q2) is the running cou-

pling constant[15] and the function v(x) can be found

in Ref. [15].

The quark-antiquark relative-motion wave func-

tions involved in the transition amplitude are solu-

tions of the Schrödinger equation with the central

spin-independent potential. Assuming a charm quark

mass, the Schrödinger equation was solved to get

quark-antiquark relative-motion wave functions that

lead to mass splittings of J/ψ, χcJ and ψ′ from the

spin-spin interaction[8, 15]. While the experimental

mass splittings are reproduced, a charm quark mass

and numerical wave functions of J/ψ, χcJ and ψ′

are determined. The determined charm quark mass

is 1.507 GeV. Similarly, the up and down (strange)

quarks have mass 0.33 GeV (0.53 GeV) determined by

fitting the experimental mass splitting of π and ρ (K

and K∗) while the numerical wave functions of π, ρ,

K and K∗ are solutions of the Schrödinger equation[8].

With the masses of light quarks and charm quark the

Schrödinger equation gives numerical wave functions

for D, D∗, Ds and D∗

s that reproduce the experimen-

tal mass splittings of D and D∗, Ds and D∗

s from the

spin-spin interaction[8]. Fourier transform of these

numerical wave functions gives their numerical rep-

resentation in momentum space. Parametrizations of

the numerical wave functions in momentum space are

ψ1lm(p) =
C(pr)l

[(pr)b1 +a1(pr)b2 +a2(pr)b3 +a3]c1
Ylm

(8)

for π, ρ, K, K∗, J/ψ, χcJ, D, D∗, Ds and D∗

s and

ψ2lm(p) =
C[(pr)1.8 −2.5921.8]

[(pr)b1 +a1(pr)b2 +a2(pr)b3 +a3]c1
Ylm

(9)

for ψ′, p is the relative momentum of quark and

antiquark, C is the normalization constant and r is

meson radius. The values of a1, a2, a3, b1, b2, b3, c1,

r and C are listed in Table 1. The wave functions are

normalized according to∫
d3p

(2π)3
ψ+

nlm(p)ψnlm(p) = 1 . (10)

Table 1. Values of parameters in the parametrizations of wave functions.

meson a1 a2 a3 b1 b2 b3 c1 r/mf C

J/ψ 1 1 13.7 1.2 2.4 2.8 2.1 0.412 1.25×103

ψ′ 0.8 0 48.8 1.4 2.7 3.6 0.836 2.22×106

χcJ 0.9 0 37.7 1.7 2.4 4.9 0.655 1.98×108

π,ρ,K,K∗ 1 1 14 1.2 1.9 3.2 2 0.806 2.67×103

D,D∗ 1 1 12.3 1.4 1.7 3.3 1.8 0.657 9.21×102

Ds,D∗

s 1 1 13.5 1.4 1.9 3.1 2 0.559 1.45×103

3 Numerical results and discussions

We concern the following meson-charmonium re-

actions:

π+J/ψ → D̄∗0D, D̄0D∗, D̄∗0D∗,

π+ψ′ → D̄∗0D, D̄0D∗, D̄∗0D∗,

π+χcJ → D̄∗0D, D̄0D∗, D̄∗0D∗,

ρ+J/ψ → D̄0D, D̄∗0D, D̄0D∗, D̄∗0D∗,

ρ+ψ′ → D̄0D, D̄∗0D, D̄0D∗, D̄∗0D∗,

ρ+χcJ → D̄0D, D̄∗0D, D̄0D∗, D̄∗0D∗,

K+J/ψ → D̄∗0Ds, D̄0D∗

s , D̄∗0D∗

s ,

K+ψ′ → D̄∗0Ds, D̄0D∗

s , D̄∗0D∗

s ,

K+χcJ → D̄∗0Ds, D̄0D∗

s , D̄∗0D∗

s .

Because of thermal distributions of mesons in

hadronic matter, the average value of
√
s of a type of

meson-meson reactions in hadronic matter is not far

away from the threshold energy
√
s0 of the type, and

we show
√
s-dependence of the unpolarized meson-

charmonium cross sections for π+J/ψ, π+χcJ and

ρ+J/ψ in the region
√
s <

√
s0 +1 GeV from Fig. 3

through Fig. 5. Due to the number of figures lim-

ited by the editorial board, the cross sections for the

other reactions are not shown. The unpolarized cross

section is the average of the two cross sections indi-

vidually obtained in the prior form and in the post

form. The threshold energy equals the total mass of

the two initial mesons of an exothermic reaction or of

the two final mesons of an endothermic reaction. The

cross section is determined by the factors
1

s
,
|P ′ |
|P | and

|M(s,t) |2. At the threshold energy |P ′ |= 0, |P |6= 0

and σ(
√
s0) = 0 for an endothermic reaction; |P ′ |6= 0,

|P |= 0 and σ(
√
s0) =∞ for an exothermic reaction.

Even though the two sorts of reactions have different

cross sections very near the threshold energy, they all

approach zero at
√
s→∞ since

|P ′ |
|P | tends to 1 and

the factors
1

s
and | M(s,t) |2 decrease with increas-

ing
√
s. The parametrizations of the quark-antiquark

relative-motion wave functions address that the wave
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functions decrease with the increasing relative mo-

mentum of quark and antiquark. When
√
s increases,

the average relative momentum of quark and anti-

quark in any of the incoming and outgoing mesons

increases. Then the squared transition amplitude ob-

tained from the wave functions decreases.

Fig. 3. Solid and dashed curves are cross sec-
tions for π+J/ψ→ D̄∗0D and D̄∗0D∗, respec-
tively.

Fig. 4. Solid and dashed curves are cross sec-
tions for π+χcJ → D̄∗0D and D̄∗0D∗, respec-
tively.

Fig. 5. Solid, dashed and dotted curves are
cross sections for ρ+J/ψ→ D̄0D, D̄∗0D, and
D̄∗0D∗, respectively.

Obviously, the maxima of cross sections for π+ψ′

reactions are larger than the maxima for π+χcJ and

the latter are larger than the ones for π+J/ψ. Sim-

ilar cases maintain for the endothermic reactions of

K+χcJ and K+J/ψ. Increasing radius from J/ψ to

χcJ and to ψ′ is displayed in Table 1. A meson with

a larger radius can have larger probability to react

with a target meson. The difference of charmonium

radii leads to the above variation of the maxima of

the cross sections.

In a figure among Figs. 3—5, the two endother-

mic reactions have identical initial mesons. The max-

imum of the cross section for the reaction with two

final vector mesons is smaller than the one with only

one final vector meson. The difference of the maxima

is controlled by |P ′ | which is smaller for the two final

vector mesons than for only one final vector meson at

the same
√
s.

For convenient use of the cross sections for en-

dothermic reactions in studying J/ψ suppression we

choose a simple functional form

σ(
√
s) =σmax

(

ε

εendo

)a

exp

[

a

(

1− ε

εendo

)]

, (11)

where ε =
√
s−√

s0, to fit the numerical cross sec-

tions for the endothermic reactions. The parameters

a, εendo in unit of GeV, σmax in unit of mb are listed

in Table 2.

Table 2. Parameters fitted to cross sections.

D̄∗0D D̄∗0D∗ D̄∗0Ds D̄0D∗

s D̄∗0D∗

s

πJ/ψ→

a 0.81255 0.35511

σmax 0.2934 0.2297

εendo−
√

s0 0.11638 0.12084

πψ′ →

a 0.52662 0.53602

σmax 3.61752 2.95

εendo−
√

s0 0.09792 0.08433

πχcJ →

a 1.6366 0.37732

σmax 1.32991 0.93875

εendo−
√

s0 0.13375 0.044

ρJ/ψ→

a 0.59269 0.42361

σmax 1.4113 1.0998

εendo−
√

s0 0.0674 0.07143

KJ/ψ→

a 0.32751 0.42337 0.68168

σmax 0.27989 0.28213 0.10532

εendo−
√

s0 0.05195 0.04856 0.2678

KχcJ →

a 0.89602

σmax 1.86373

εendo−
√

s0 0.07225

At present, there are no experimental data for

the charmonia dissociation cross sections in both free

space and hadronic matter at finite temperature and

density. However, the present method for studying



No. 9 LIU Yan-Ju et alµCross sections for charmonia dissociation in collisions with pions, rhos and kaons 737

the charmonia dissociation can be extended to cal-

culate the cross sections with medium effect. At

finite temperature the confinement gets weak and

the linear confinement should be replaced by plateau

form obtained in lattice gauge calculations[16]. With

such a potential modified by medium quark-antiquark

relative-motion wave functions have larger spatial ex-

tension than those related to the linear confinement

in free space. Then the charmonia dissociation cross

sections are expected to become larger in hadronic

matter.

4 The prior form and the post form

At the first sight of the transition amplitudes in

the prior form and in the post form, the difference

between the first two terms in Eq. (4) and the ones in

Eq. (5) makes Mprior 6= Mpost possible. However, as

long as the quark-antiquark wave functions are eigen-

functions of the potential (7), Mprior = Mpost is en-

sured according to the proofs in Refs. [9] and [10].

If the quark-antiquark wave functions are not eigen-

functions of the potential, i.e., are approximate wave

functions to the eigenfunctions, Mprior will not equal

Mpost as shown by the discrepancy of the cross sec-

tions in the prior form and in the post form in Fig. 6.

The approximate wave functions in the present work

are given by the Schrödinger equation with the cen-

tral spin-independent terms of the potential. Never-

theless, there is no post-prior discrepancy in the elas-

tic scattering of the I = 2 ππ[12, 13] and the I = 3/2

Kπ[13]. This is observed from the numerical calcu-

lations of S-wave phase shifts, but the reason is not

clear. In this section we derive analytic expressions

of the transtion amplitudes in the prior from and

in the post form with the tree-level spin-spin term

−λa

2
•

λb

2

16π2

25

sa
•sb

mamb

to find the reason for the equiv-

alence of Mprior and Mpost.

Fig. 6. Cross sections for π+ψ′
→ D̄∗0 + D∗.

Solid curve: the post form; dashed curve: the
average value; dotted curve: the prior form.

The quark-antiquark relative-motion wave func-

tions in momentum space can also be parametrized

as

ψqq = (8πα1)
3/4e−α1p

2
qq̄ , ψcc = (8πα2)

3/4e−α2p
2
cc̄ ,

for the initial mesons and

ψqc = (8πα3)
3/4e−α3p

2
qc̄ , ψcq = (8πα4)

3/4e−α4p
2
cq̄ ,

for the final mesons. pab means relative momentum

of constituents a and b. α1, α2, α3 and α4 are con-

stants. The four wave functions satisfy the normal-

ization condition (10). Fitted to Fourier transform of

the numerical solutions of the Schrödinger equation

with the central spin-independent potential, the pa-

rameters α1, α2, α3 and α4 take values 0.0621 fm2 for

J/ψ, 0.2284 fm2 for π, ρ, K and K∗, 0.1599 fm2 for D

and D∗, 0.1168 fm2 for Ds and D∗

s .

The matrix element of the spin-spin term is

I =−〈ψqc̄|〈ψcq̄|
λa

2
•

λb

2

16π2

25

sa
•sb

mamb

|ψqq̄〉|ψcc̄〉.

For the quark-interchange processes in the prior form

and in the post form the matrix element is

IC1prior = −

128π2

25

λq

2
•

λc̄

2

sq ·sc̄

mqmc̄

(α1α2α3α4)
3/4

[(α1 +α2 +α4)α3]
3/2

exp

{

−

[(

mq

mq +mq̄
P

)2

α1 +

(

mc̄

mc +mc̄
P +P

′

)2

α2 +

(

P +
mq̄

mc +mq̄
P

′

)2

α4

]

+

[(

mq

mq +mq̄
P

)

α1 +

(

mc̄

mc +mc̄
P +P ′

)

α2 +

(

P +
mq̄

mc +mq̄
P ′

)

α4

]2

α1 +α2 +α4

}

, (12)

IC2prior = −

128π2

25

λq̄

2
·

λc

2

sq̄ ·sc

mq̄mc

(α1α2α3α4)
3/4

[(α1 +α2 +α3)α4]
3/2

exp

{

−

[(

mq̄

mq +mq̄
P

)2

α1 +

(

mc

mc +mc̄
P −P

′

)2

α2 +

(

P −

mq

mq +mc̄
P

′

)2

α3

]

+

[(

mq̄

mq +mq̄
P

)

α1 +

(

mc

mc +mc̄
P −P ′

)

α2 +

(

P −

mq

mq +mc̄
P ′

)

α3

]2

α1 +α2 +α3

}

, (13)
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IT1prior = −

128π2

25

λq

2
·

λc

2

sq ·sc

mqmc

(α1α2α3α4)
3/4

[(α1 +α4)(α2 +α3)]
3/2

exp

{

−

[(

mq

mq +mq̄
P

)2

α1 +

(

mc̄

mc +mc̄
P +P

′

)2

α2 +

(

mq

mq +mc̄
P

′

)2

α3 +

(

P +
mq̄

mc +mq̄
P

′

)2

α4

]

+

[(

mq

mq +mq̄
P

)

α1 +

(

P +
mq̄

mc +mq̄
P ′

)

α4

]2

α1 +α4
+

[(

mc̄

mc +mc̄
P +P ′

)

α2 +

(

mq

mq +mc̄
P ′

)

α3

]2

α2 +α3

}

, (14)

IT2prior = −

128π2

25

λq̄

2
·

λc̄

2

sq̄ ·sc̄

mq̄mc̄

(α1α2α3α4)
3/4

[(α1 +α3)(α2 +α4)]
3/2

exp

{

−

[(

mq̄

mq +mq̄
P

)2

α1 +

(

mc

mc +mc̄
P −P

′

)2

α2 +

(

P −

mq

mq +mc̄
P

′

)2

α3 +

(

mq̄

mc +mq̄
P

′

)2

α4

]

+

[(

mq̄

mq +mq̄
P

)

α1 +

(

P −

mq

mq +mc̄
P ′

)

α3

]2

α1 +α3
+

[(

mc

mc +mc̄
P −P ′

)

α2 +

(

mq̄

mc +mq̄
P ′

)

α4

]2

α2 +α4

}

, (15)

IC1post = −

128π2

25

λq

2
·

λq̄

2

sq ·sq̄

mqmq̄

(α1α2α3α4)
3/4

[α1(α2 +α3 +α4)]
3/2

exp

{

−

[(

mc̄

mc +mc̄
P +P

′

)2

α2 +

(

mq

mq +mc̄
P

′

)2

α3 +

(

P +
mq̄

mc +mq̄
P

′

)2

α4

]

+

[(

mc̄

mc +mc̄
P +P ′

)

α2 +

(

mq

mq +mc̄
P ′

)

α3 +

(

P +
mq̄

mc +mq̄
P ′

)

α4

]2

α2 +α3 +α4

}

, (16)

IC2post = −

128π2

25

λc

2
·

λc̄

2

sc ·sc̄

mcmc̄

(α1α2α3α4)
3/4

[(α1 +α3 +α4)α2]
3/2

exp

{

−

[(

mq

mq +mq̄
P −P

′

)2

α1 +

(

mc̄

mq +mc̄
P

′

)2

α3 +

(

P −

mc

mc +mq̄
P

′

)2

α4

]

+

[(

mq

mq +mq̄
P −P ′

)

α1−

(

mc̄

mq +mc̄
P ′

)

α3 +

(

P −

mc

mc +mq̄
P ′

)

α4

]2

α1 +α3 +α4

}

, (17)

IT1post = IT1prior, (18)

IT2post = IT2prior. (19)

For the concerned meson-J/ψ reactions mq 6=mc,

mq̄ 6=mc̄ and α1 6=α2. No one of IC1prior and IC2prior

equals one of IC1post and IC2post. Therefore, the post-

prior discrepancy happens in the meson-J/ψ dissoci-

ation reactions.

Regarding the elastic scattering of ππ and Kπ,

mq = mc, | P |=| P ′ | and the quark-antiquark

relative-motion wave functions of π and K in mo-

mentum space are taken to be the same, i.e., α1 =

α2 =α3 =α4 =α. Then the matrix elements IC1prior,

IC2prior, IC1post and IC2post are simplified to

IC1prior = − 128π2

75
√

3mqmc̄

(

− 4

9

)(

− 3

8

)

×

exp

{

2

3
[−2+2Rq̄+2Rc̄−2R2

q̄−R2
c̄ −

Rq̄Rc̄ +(2−2Rq̄−2Rc̄−R2
q̄ +

Rq̄Rc̄)cosθ]P 2α

}

, (20)

IC2prior = − 128π2

75
√

3mqmq̄

(

− 4

9

)(

− 3

8

)

×

exp

{

2

3
[−2+2Rq̄+2Rc̄−R2

q̄−2R2
c̄ −

Rq̄Rc̄ +(2−2Rq̄−2Rc̄−R2
c̄ +

Rq̄Rc̄)cosθ]P 2α

}

, (21)

IC1post = − 128π2

75
√

3mqmq̄

(

− 4

9

)(

− 3

8

)

×

exp

{

2

3
[−2+2Rq̄+2Rc̄−R2

q̄−2R2
c̄ −

Rq̄Rc̄ +(2−2Rq̄−2Rc̄−R2
c̄ +

Rq̄Rc̄)cosθ]P 2α

}

, (22)

IC2post = − 128π2

75
√

3mqmc̄

(

− 4

9

)(

− 3

8

)

×

exp

{

2

3
[−2+2Rq̄+2Rc̄−2R2

q̄−

R2
c̄ −Rq̄Rc̄ +(2−2Rq̄−2Rc̄−R2

q̄ +

Rq̄Rc̄)cosθ]P 2α

}

. (23)
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with Rq̄ =
mq̄

mq +mq̄

and Rc̄ =
mc̄

mq +mc̄

.

Apparently,

IC1prior = IC2post, IC2prior = IC1post. (24)

If mq̄ =mc̄, I
C1prior = IC2prior = IC1post = IC2post. The

transition amplitudes with the one-gluon-exchange

spin-spin term are

Mss
prior = 4

√

EAEBECED(IC1prior +

IC2prior +IT1prior +IT2prior), (25)

Mss
post = 4

√

EAEBECED(IC1post +

IC2post +IT1post +IT2post), (26)

which possess the relation

Mss
prior =Mss

post, (27)

as long as mq = mc and whether mq̄ = mc̄ or not.

This relation is obtained without the specification of

α. Since all the mesons in the ground-state pseu-

doscalar octet and the ground-state vector nonet can

be assumed to have the same spatial wave function of

the quark-antiquark relative motion[8, 13], the relation

holds for elastic scattering of any two mesons in the

octet and the nonet if the quarks or the antiquarks

of the two mesons are of the same flavor. About

elastic meson-meson scattering that is governed by

the quark-interchange processes, the impossible cases

are: mq =mc̄ and mc 6=mq̄; mc =mq̄ and mq 6=mc̄;

mq =mc̄ and mc =mq̄.

Simple analytic expressions of the transition am-

plitudes with the terms except the third term on the

right-hand side of Eq. (7) can not be obtained since

the involved integrands are complicated. However,

numerical calculations show that the transition am-

plitude with the central spin-independent terms and

the loop-level spin-spin term in the prior form equals

the one in the post form.

The results of the above reasoning are that the

transition amplitude of the potential (7) in the prior

form equals the one in the post form and there is no

post-prior discrepancy of S-wave elastic phase shifts

for I = 2 ππ and I = 3/2 Kπ scattering. The reason

for the disappearance of the post-prior discrepancy is

that the quarks or the antiquarks of the two mesons in

elastic scattering have the same flavor and the wave

functions of the quark-antiquark relative motion of

mesons A, B, C and D in momentum space are iden-

tical.

5 Summary

We have obtained the unpolarized cross sec-

tions for π-charmonium, ρ-charmonium and K-

charmonium dissociation reactions that are governed

by the quark-interchange processes. The transition

amplitudes are calculated with the potential from

QCD and quark-antiquark wave functions that are

given by the central spin-independent terms of the

potential. The cross sections depend on the center-

of-mass energy
√
s, the masses and spins of the initial

and final mesons. The cross sections for endother-

mic reactions are parametrized for convenient appli-

cations. Cross sections for the production of D̄0D∗

equal those of D̄∗0D and similar equalities almost hold

for D̄0D∗

s and D̄∗0Ds.

The post-prior discrepancy exists in meson-meson

inelastic sacttering like charmonium dissociation in

collisions with π, ρ and K when the approximate

wave functions of quark-antiquark relative motion in

mesons are used. However, in elastic scattering of

the I = 2 ππ and the I = 3/2 Kπ the post-prior

discrepancy disappears while the wave functions of

quark-antiquark relative motion inside π and K take

the same approximate wave function. This is clearly

shown by the simple analytic expressions of the tran-

sition amplitudes corresponding to the tree-level spin-

spin interaction in the prior form and in the post

form. The discrepancy in meson-meson elastic scat-

tering that is governed by the quark-interchange pro-

cesses depends on the difference of quark or antiquark

masses and of quark-antiquark spatial distributions of

the two mesons.
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