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Design of magnet and control of the beam

emittance for Penning H− ion source
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Abstract The design requirement and principle of the deflection magnet for Magnetron and Penning H− ion

source are discussed. It is proved that there exists a maximum emittance for the beam that may be transformed

by the magnet into a state with equal Twiss parameters of αr =αy and βr =βy, which is the requisite condition

to get a minimum emittance at the entrance of RFQ after transporting by a LEBT with solenoids. For this

maximum emittance, the corresponding magnetic field gradient index is 1.
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1 Introduction

The Magnetron and Penning H− ion sources[1, 2]

are widely used in accelerators. Usually the ions are

extracted from a long slit and the ion source is dis-

posed in a 90◦ deflection magnet with a special mag-

netic field gradient index n = −
r

B

∂B

∂y
. In practice,

the magnetic field gradient index n is generally de-

signed to 1[1, 2]. Following the ion source two or three

solenoids are often used in a low energy beam trans-

port line (LEBT) and then the beam is injected into

a Radio-Frequency Quadrupole accelerator (RFQ),

which is generally designed to accept an axial sym-

metric input beam with the same values of α and β

as well as the same beam emittances in the two trans-

verse phase planes. However, the beam extracted

from the above kinds of ion sources is generally of

the different values of α and β as well as the different

emittances in the two transverse phase planes. The

previous research results[3, 4] show that even when the

initial transverse beam has different emittances in the

two transverse phase planes, but if the initial trans-

verse beam has the same values of α and β in the

two phase planes, a beam with minimum and equal

emittances at the entrance of RFQ can be still got

through controlling the coupling and the focusing of

the solenoids in LEBT. The deflection magnet and the

extraction gap of ion source may be specially designed

to accomplish this objective that transforms the ex-

tracted beam with unequal values of α and β into a

beam with equal values of α and β in the two planes.

In this paper, the requirements for the magnetic field

gradient index n and the distance of extraction gap

to get a beam with the same values of α and β in the

two planes at the exit of the deflection magnet are

obtained.

2 Singular particle model to approxi-

mately get the requirements for the

magnetic field gradient index n and

the extracted beam divergence

First, a singular particle model is used to ana-

lytically deduce the requisite magnetic field gradient

index n and the extracted beam divergence to get an

axial symmetric beam, i.e., the beam has the same

values of α and β as well as the same beam emit-

tances in the two transverse phase planes at the exit

of the deflection magnet. In the model, assuming

that: (1) the beam is extracted from a slit with the

length of 2r1 = 2a and the width of 2y1 = 2b, having

a beam divergence of r′

1 and y′

1 in the two transverse

planes, respectively. (2) The beam is a laminar flow,

ie., the ion trajectories do not cross. (3) Hard-edge

approximation is used for the magnetic field. The

magnet deflection angle is θ and the bending radius
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is R. When a linear approximation is used, the beam

envelope, (r2, y2), and the beam divergence, (r′

2, y′

2),

which is also the amplitude and the slope of the most

outer ion of the beam, are determined by the follow-

ing equations at the exit of magnet[5]:
(

r2

r′

2

)

=

(

M11 M12

M21 M22

)(
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. (2)

In getting the above equations, we have assumed that

the magnetic field gradient n satisfies the condition

0 < n 6 1, i.e., the deflection magnet provides the ion

beam with weak focus.

Assuming a parallel beam (beam waist or beam

belly) with a circular cross section at the output is

required, i.e., r2 = y2, r′

2 = 0, and y′

2 = 0. Then,

from Eqs. (1) and (2), the following equations can be

deduced:
cos

[

n1/2θ
]

cos[(1−n)1/2θ]
=

y1

r1

, (3)

r2 =
r1

cos[(1−n)1/2θ]
, (4)

y2 =
y1

cos[n1/2θ]
, (5)

r′

1 =
r1

R
[1−n]

1/2
tan

[

(1−n)1/2θ
]

, (6)

y′

1 =
y1

R
n1/2 tan

[

n1/2θ
]

. (7)

From the above equations, one can conclude that: (1)

In order to obtain a parallel beam (beam waist or

beam belly) with a circular cross section at the out-

put, the requisite magnetic field gradient index n is

determined by the aspect ratio of slit. For an exam-

ple, R=8 cm, θ = 90◦, a = 5 mm and b = 0.3 mm

are used by RAL[2]. In this case, n ≈0.932 should

be used. (2) A beam with definite divergent angle

in r and y direction should be extracted from the ion

source. For the ion source used in RAL, from Eqs. (3),

(6) and (7), the got beam divergence is r′

1 ≈ 0.4◦ and

y′

1 ≈ 4.17◦. As is known, for a very long slit with-

out the end aberration, the beam divergence r′

1 in

the long direction of the slit, is determined by the

following equation:

r′

1 ≈

√

kTi

eVa

. (8)

In which, Ti is the ion plasma temperature, k the

Boltzmann constant and Va the extraction voltage.

For stable plasma, the ion energy is usually of the or-

der kTi ≈1 eV. For the RAL ion source, Va=17 keV,

then the beam divergence in r direction is r′

1 ≈ 0.44◦.

It approximates the requisite value. For plasma with

a definite density and beam current, y′

1 is determined

by the distance of the extraction gap for a certain

extraction electrode. That means that, in order to

get the needed beam, the distance of extraction gap

should be adjusted to an optimum value.

3 Numerical solution for the magnetic

field gradient index n and the ex-

tracted beam divergence

Singular particle model is very beneficial to ana-

lytically deduce the requisite magnetic field gradient

index n and the extracted beam divergence. However,

in reality, the beam emittance will never be zero and

the beam is also not a laminar flow. Moreover, the

beam extracted from the ion source generally has dif-

ferent emittances in the two transverse dimensions.

For example, the measured ratio of beam emittance

in the two transverse dimensions is εr/εy ≈ 1.07−1.39

for the RAL ion source[6, 7]. In this case, as pointed in

Refs. [3, 4], after transported by the magnet, a beam

with the same values of α and β in the two phase

planes at the exit of magnet is the optimum choice.

That is to say, we require:

α2r = α2y , (9)

β2r = β2y . (10)

As is known, transformation of the Twiss parameters

is determined by the following equation[8]:
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γ2
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M 2
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 , (11)

where β = X2/ε, γ = φ2/ε, and α = −
√

φ2X2−ε2/ε

(Assuming the beam is a divergent beam), here X

and φ are the maximum dimension (envelope) and the

maximum divergent angle of the beam, respectively,

ε stands for the beam emittance in r or y direction.
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From Eqs. (1), (2), and (9)—(11), we may obtain

the following equations:

cos2(
√

1−nθ)β1r −

2R
√
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]
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R
√
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nθ)cos(

√
nθ)γ1y , (13)

In the above Eq. (12) and Eq. (13), the known

parameters are: the deflection angle θ = π/2, the

bending radius R, the slit length 2a and width 2b.

The beam emittance, εr and εy may be also known

through measurement. There are still three unknown

parameters: the magnetic field gradient index n, the

maximum beam divergent angle from source in long

slit edge direction φ1r and in narrow slit edge direc-

tion φ1y. As mentioned above, the divergent angle

in long edge direction is determined through the ion

temperature. So it is reasonable and without losing

generality to assume that the beam phase ellipse in r

direction is an upright ellipse. That means:

α1r = 0 , (14)

φ1r =
εr

a
. (15)

Based on Eqs. (14) and (15), Eqs. (12) and (13) may

be rewritten as:
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√
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R
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R2
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εy(1+α2
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b2
. (17)

By numerical solution of the Eqs. (16) and (17), the

requisite optimum n and φ1ythat result in α2r = α2y

and β2r = β2y may be obtained.

However, it is discovered that there exists a max-

imum emittance within which Eq. (16) and Eq. (17)

are solvable, as shown in Fig. 1 (for the case

a = 5 mm, b = 0.3 mm, R = 8 cm and θ = π/2).

As shown in the figure, for the maximum emittance,

the corresponding magnetic field index is 1. In Fig. 1,

the relation between the required beam divergent an-

gle φ1y and the ratio of the initial emittance εy/εr is

also given.

Fig. 1. The got maximum initial emittance εy

(dot), beam divergence φ1y (triangle) and field
gradient index n (square) versus the ratio of
the initial emittance εy/εr.

Physically, a prerequisite for a solvable Eq. (16)

and Eq. (17) is that the field gradient index n must

satisfy n 6 1. For n = 1, Eq. (16) and Eq. (17) may

be rewritten as follows:

Rθ
εr

a2
= α1y , (18)

a2

εr

+R2θ2 εr

a2
=

R2εy(1+α2
1y)

b2
, (19)

From Eq. (18), one can see that, α1y, as well as φ1y,

are only determined by εr for a certain source. Sub-

stituting Eq. (18) into Eq. (19), we may get:

εrεy =

(

ab

R

)2

. (20)

Let k = εy/εr, the following relations may be got:

εr =
ab

R
√

k
, (21)

εy =

√
kab

R
. (22)

It is just the same result got by numerical calcula-

tion. To demonstrate this more clearly, in Fig. 2, we
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redraw Fig. 1 by changing the abscissa from εy/εr to
√

εy/εr.

Fig. 2. The got maximum initial emittance εy

(dot), beam divergence φ1y (triangle) and field
gradient index n (square) versus the root of

the ratio of the initial emittance
√

εy/εr.

Figure 2 clearly shows that both the maximum

beam emittance εymax and the beam divergence angle

φ1y in y direction are linearly proportional to
√

εy/εr.

In addition, the physical meaning of Eq. (21) and

Eq. (22) could be also well understood through the

singular particle model. From Eq. (1) and Eq. (2),

let n = 1, then we have: r2max = a, r′

2max = r′

1max,

y2max = Ry′

1max, y′

2max = −b/R. By using Eq. (15),

one gets r′

1max = ε/a. For a symmetric beam out-

put, it is required that r′

2max = y′

2max, then we have:

ε = ab/R. That means, for the symmetric output

beam, the emittance is determined by ab/R.

For the smaller emittance (as an example, let

εr = 5 πmm·mrad), the requisite field gradient index

n and divergent angle of extraction beam is shown in

the following Fig. 3.

Fig. 3. In the case of εr=5 πmm·mrad, the got
field gradient index n (dot) and the required
divergent angle φ1y (triangle) versus the ratio
of the initial emittance εy/εr.

Usually the beam emittance in y direction is less

than that in r direction (εy/εr 6 1). So, from Fig. 1,

one can see that the permissive maximum emittance

εperm
ymax in y direction to get α2r = α2y and β2r = β2y

is less than 18.5 πmm·mrad. Unfortunately, the

actual beam emittance is generally in the order of

166 πmm·mrad, much larger than εperm
ymax. That means

it is impossible to get a complete requisite beam for

the case of 0 < n 6 1. Certainly, here the factor of

emittance growth due to the space charge force in

the beam transporting process is not taken into ac-

count. In practice, the deflection magnet with n 6 1

is widely used in Magnetron[1] and Penning H− ion

sources. However, from the above discussion, it could

be deduced that in order to get a complete requisite

beam with larger emittance, the magnetic field gra-

dient n should be larger than 1.

4 Other factors related with the de-

sign of magnet

4.1 Beam centering

To the first order approximation, the deflection

magnet can be treated as a magnet with an effec-

tive hard edge. In order to center the beam at the

designed axis, a certain beam injection site must be

matched by a definite magnetic edge. That means

that, for a certain injection site, as well as the extrac-

tor site, if the magnetic edge is wrong, assuming an

error of ∆x for example, then the output beam must

have a declination angle δ with respect to the axis

when the beam is output at the axis; or the output

beam must have a displacement, ∆y, relative to the

axis, when the beam is output parallel to the axis.

For an estimation of the order, we have δ ≈ ∆x/R

and ∆y ≈ ∆x. Usually it is not easy to design and

construct a magnet with the requisite magnetic edge,

so a properly deposited thick iron plate[1] or some

magnetic diaphragm[2] is used to cut the spreading

magnetic field and form the requisite edge. In addi-

tion, the source place and the beam injection angle

should be repeatedly and accurately chosen.

4.2 Extracting voltage stability or magnetic

field stability

As is known, the variation of beam momentum,

∆p/p, will cause the variation in beam position, ∆r,

and beam angle divergence, ∆r′, at the exit of mag-

net. Linear approximation is used again, we have:


















∆r2 =
∆p

p

R

1−n

{

1−cos
[

(1−n)1/2θ
]}

,

∆r′

2 =
∆p

p

sin
[

(1−n)1/2θ
]

(1−n)1/2
,

(23)

In order to estimate the order of this effect, we as-

sume the output emittance diagram is an upright el-

lipse. The effect on the emittance diagram resulting

from these variation is shown in the following Fig. 4.

The original beam emittance for a stable extrac-

tion voltage is: ε = r2r
′

2. The relative emittance varia-

tion caused by the momentum variation is determined

by the following equation:

∆ε

ε
≈

r2∆r′

2 +r′

2∆r2

r2r′

2

. (24)

According to the above design parameter, we assume:
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n =0.94, εn = 1 πmm·mrad, ε = 166 πmm·mrad,

r2=5.45 mm, r′

2 =30.5 mrad. For some characteristic

momentum variation value, the got emittance varia-

tion value due to the momentum variation is shown

in the following Table 1.

Fig. 4. The schematic diagram of beam emit-
tance change.

Table 1. The emittance variation caused by the
momentum change.

∆p/p ∆r2/mm ∆r′2/mrad ∆ε/ε

1×10−3 0.098 1.53 0.068
2.5×10−3 0.24 3.83 0.17
5×10−3 0.49 7.66 0.34

7.5×10−3 0.73 11.5 0.51
1×10−2 0.98 15.3 0.68

If ∆ε/ε 620% is required, ∆p/p should be less

than ∼3×10−3. As is known, the extraction energy

variation ∆E, the extraction voltage variation ∆V

and the beam momentum variation ∆p/p, satisfy the

following relation ∆E/E ∝ ∆V/V ∝ 2∆p/p. Usu-

ally the extraction energy variation, as well as the

extraction voltage variation is determined by the high

voltage slewing on the output capacitor of the power

supply within the pulse width for a pulsed extrac-

tion beam. Thus the capacitor, C, must satisfy the

following expression:

C >
Iτ

2V

p

∆p
. (25)

Where I is the total loading current of the power sup-

ply, τ is the beam pulse width. For a typical value,

I = 0.5 A, τ=1.0 ms, V =17 kV, then C >4.9 µF.

5 Summary and discussion

Based on the different beam emittance value, the

magnetic field gradient index n and the extraction

gap relating with the beam divergence can be spe-

cially designed to transform the extracted beam with

unequal values of α and β into a beam with equal

values of α and β in the two transverse planes. With

such an input beam, a beam with minimum and

equal emittances at the entrance of RFQ can be got

through controlling the coupling and the focusing of

the solenoids in LEBT. The numerical solution results

show that, there exists a maximum emittance value

for the beam extracted from the ion source when the

field gradient index n is less than or equal to 1 as

generally used for the Magnetron and Penning H−

ion sources. Unfortunately, this maximum emittance

is greatly less than the measured beam emittance. In

practice, the beam emittance is generally measured

at a site located in LEBT downstream the exit of the

magnet. This measured emittance is definitely larger

than the beam emittance at the exit of ion source af-

ter the long distance transportation due to the space

charge force. On the other hand, the beam with a

large emittance can still be matched by increasing the

magnetic field gradient index from the present value

n 6 1 to n > 1. In this case, the beam size in y direc-

tion will increase further due to magnet defocusing

in y direction. So the magnet pole gap must be also

designed to a comparatively larger value.
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