Study of $\psi(4415)$ in the QPC model ${ }^{*}$

ZHAO Shu－Min（赵树民）$)^{1}$ LIU Li－Quan（刘立全）$)^{1 ; 1)}$ HA Jing（哈静）${ }^{2}$
LI Xia（李霞）${ }^{1}$ GUO Qing－Lin（郭庆林 $)^{1}$
1 （College of Physics Science and Technology，Hebei University，Baoding 071002，China）
2 （College of Science，Hebei Agricultural University，Baoding 071001，China）

Abstract

Some authors consider the $\psi(4415)$ to be the $4 S$ or $5 S$ excited state of a c \bar{c} pair．Starting from this assumption，we study the decays of the $\psi(4415)$ to $D \bar{D}, D^{*} \overline{\mathrm{D}}^{*}, \mathrm{D}_{\mathrm{S}} \overline{\mathrm{D}}_{\mathrm{S}}, \mathrm{D}_{\mathrm{S}}^{*} \overline{\mathrm{D}}_{\mathrm{S}}^{*}$ ，and get the corresponding branching ratios in terms of the Quark－Pair－Creation（QPC）model．Compared with the experimental data，we find that the results of $4 S$ state agree much better than those of the $5 S$ state．Therefore，it is more reasonable to assume the $\psi(4415)$ to be a $4 S$ state．

Key words QPC model，strong decay，wave function，branching ratio
PACS 13．20．Gd

1 Introduction

Considered as a cc excited state，the $\psi(4415)$ has attracted the attention of both，theorists and experi－ mentalists of high energy physics during the last few years．However，there is a dispute about the state of $\psi(4415)$ ．Some people thought it should be a $4 S$ state ${ }^{[1,2]}$ ，while others pointed out a $5 S$ state is more reasonable ${ }^{[3,4]}$ ．So，it is very important to ascertain the state of the $\psi(4415)$ ．To clarify the mist，we study the strong decays of $\psi(4415)$ ，with the QPC model and the harmonic oscillator wave functions of both， the $4 S$ state and the $5 S$ state．

Based on the assumption that $\psi(4415)$ can be the $4 S$ or the $5 S$ state，we study the decays $\psi(4415) \rightarrow$ （ $\mathrm{D} \overline{\mathrm{D}}, \mathrm{D}^{*} \overline{\mathrm{D}}^{*}, \mathrm{D}_{\mathrm{S}} \overline{\mathrm{D}}_{\mathrm{S}}, \mathrm{D}_{\mathrm{S}}^{*} \overline{\mathrm{D}}_{\mathrm{S}}^{*}$ ），and calculate the corre－ sponding decay widths in the QPC model．We com－ pare the obtained branching ratios with the experi－ mental data in the Particle Data Book，and find that the results of the $4 S$ state are in better agreement than those of the $5 S$ state．

The paper is organized as follows．After this introduction，in Section 2，we introduce the QPC model，and in Section 3，we formulate the decays of $\psi(4415) \rightarrow\left(\mathrm{D} \overline{\mathrm{D}}, \mathrm{D}^{*} \overline{\mathrm{D}}^{*}, \mathrm{D}_{\mathrm{S}} \overline{\mathrm{D}}_{\mathrm{S}}, \mathrm{D}_{\mathrm{S}}^{*} \overline{\mathrm{D}}_{\mathrm{S}}^{*}\right)$ ．The numerical results together with all the input parameters are pre－ sented in Section 4．The last section is devoted to a
simple discussion and conclusion．

2 The QPC model

The QPC model was first proposed by MICU ${ }^{[5]}$ in 1969，and used to calculate the strong decays of mesons．The idea is that the decay occurs through a quark－antiquark pair created from the vacuum with its quantum numbers $J^{P C}=0^{++}$．In the 1970 s ，the QPC model was developed by Yaouanc et al．${ }^{[2,6-8]}$ ， and extensively applied to hadron decays．Recently some studies of the QPC model ${ }^{[9-11]}$ and its ap－ plications in calculating hadron decays have been done ${ }^{[12-16]}$ ．The meson decay is graphically shown in Fig．1．The quark－antiquark（ $q \bar{q}$ ）pair（3 and 4） is created from the vacuum，with which the quark－ antiquark pair（ 1 and 2 in A ）from the initial particle constitutes the new particles（ B and C ）．In the pro－ cess of the $q \bar{q}$ pair creation，the other quarks remain unaffected．

In Fig． 1 the $q \bar{q}$ pair（3 and 4）created from the vacuum，has the quantum numbers of the vacuum， such that it is a color－and flavor－singlet，of zero mo－ mentum and zero total angular momentum．Due to parity conservation in the process，it must be of posi－ tive parity．As a fermion－antifermion pair，the $\mathrm{q} \overline{\mathrm{q}}$ has $P=(-1)^{L+1}, C=(-1)^{L+S}$ ，and，since it is created

[^0]from the vacuum, it has the vacuum quantum numbers $J^{P C}=0^{++}$, from which we get $L=1, S=1$ of the $\mathrm{q} \overline{\mathrm{q}}$ pair.

Fig. 1. The decay $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$ in the QPC model.

In terms of the QPC model ${ }^{[2,6,7]}$, we calculate the Feynman amplitudes $\mathcal{M}(l, s)$ for the process $\mathrm{A} \rightarrow$ $\mathrm{B}+\mathrm{C}$ and get the branching ratios of the decays. We use the notation $J_{\mathrm{X}}, L_{\mathrm{X}}, S_{\mathrm{X}}$ and $I_{\mathrm{X}}(\mathrm{X}=\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{P})$ for the spin, internal quark orbital angular momentum, total quark spin, and isospin of the mesons (A, B, C) or of the pair (P). The Feynman amplitudes $\mathcal{M}(l, s)$ for the decay $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$ can be expressed by the reduced matrix elements:

$$
\begin{align*}
\mathcal{M}(l, s)= & f \mathcal{I}^{I_{\mathrm{A}} I_{\mathrm{B}} I_{\mathrm{C}}} \sum_{L_{\mathrm{i}}, L_{\mathrm{f}}, S} \mathcal{L}_{L_{\mathrm{i}} L_{\mathrm{f}} l}^{L_{\mathrm{A}} L_{\mathrm{B}} L_{\mathrm{C}}} \mathcal{S}_{S}^{S_{\mathrm{A}} S_{\mathrm{B}} S_{\mathrm{C}}} \times \\
& (-1)^{1+L_{\mathrm{f}}+L_{\mathrm{A}}+L_{\mathrm{P}}}(2 S+1)\left(2 L_{\mathrm{i}}+1\right) \times \\
& {\left[\frac{1}{3}\left(2 J_{\mathrm{B}}+1\right)\left(2 L_{\mathrm{f}}+1\right)\left(2 J_{\mathrm{C}}+1\right) \times\right.} \\
& (2 s+1)]^{1 / 2}\left\{\begin{array}{ccc}
L_{\mathrm{A}} & S_{\mathrm{A}} & J_{\mathrm{A}} \\
S & L_{\mathrm{i}} & L_{\mathrm{P}}
\end{array}\right\} \times \\
& \left\{\begin{array}{ccc}
L_{\mathrm{f}} & l & L_{\mathrm{i}} \\
J_{\mathrm{A}} & S & s
\end{array}\right\}\left\{\begin{array}{ccc}
L_{\mathrm{B}} & S_{\mathrm{B}} & J_{\mathrm{B}} \\
L_{\mathrm{C}} & S_{\mathrm{C}} & J_{\mathrm{C}} \\
L_{\mathrm{f}} & S & s
\end{array}\right\} \tag{1}
\end{align*}
$$

The constant f takes on the value $\sqrt{\frac{2}{3}}$ or $-\sqrt{\frac{1}{3}}$ according to the isospin $\frac{1}{2}$ or 0 of the created quarks, and the subscripts i and f denote the initial state and the final state, respectively. There are some conventions for adding angular momenta and isospins as follows:

$$
J_{\mathrm{B}}+J_{\mathrm{C}}=s, l+s=J_{\mathrm{A}}, \quad I_{\mathrm{B}}+I_{\mathrm{C}}=I=I_{\mathrm{A}}
$$

l is the orbital angular momentum between the final mesons B and C.

In Eq. (1) $\mathcal{I}^{I_{\mathrm{A}} I_{\mathrm{B}} I_{\mathrm{C}}}$ and $\mathcal{S}_{S}^{S_{\mathrm{A}} S_{\mathrm{B}} S_{\mathrm{C}}}$ are isospin and spin reduced matrix elements given by:

$$
\begin{align*}
\mathcal{I}^{I_{\mathrm{A}} I_{\mathrm{B}} I_{\mathrm{C}}}= & (-1)^{I_{1}+I_{\mathrm{C}}+I_{\mathrm{A}}+I_{2}}\left[\frac{1}{2}\left(2 I_{\mathrm{C}}+1\right) \times\right. \\
& \left.\left(2 I_{\mathrm{B}}+1\right)\right]^{\frac{1}{2}}\left\{\begin{array}{ccc}
I_{1} & I_{\mathrm{B}} & I_{3} \\
I_{\mathrm{C}} & I_{2} & I_{\mathrm{A}}
\end{array}\right\} \tag{2}
\end{align*}
$$

$$
\begin{align*}
\mathcal{S}_{S}^{S_{\mathrm{A}} S_{\mathrm{B}} S_{\mathrm{C}}}= & {\left[\left(2 S_{B}+1\right)\left(2 S_{\mathrm{C}}+1\right)\left(2 S_{\mathrm{A}}+1\right) \times\right.} \\
& \left.\left(2 S_{\mathrm{P}}+1\right)\right]^{\frac{1}{2}}\left\{\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & S_{\mathrm{B}} \\
\frac{1}{2} & \frac{1}{2} & S_{\mathrm{C}} \\
S_{\mathrm{A}} & S_{\mathrm{P}} & S
\end{array}\right\} \tag{3}
\end{align*}
$$

where $S_{\mathrm{A}}+S_{\mathrm{P}}=S, S_{\mathrm{B}}+S_{\mathrm{C}}=S$.
We calculate the decay widths and obtain the branching ratios with the formulae as follows:

$$
\begin{gather*}
\Gamma_{\mathrm{A} \rightarrow \mathrm{~B}+\mathrm{C}}^{l, s}=2 \pi \frac{E_{\mathrm{B}} E_{\mathrm{C}}}{m_{\mathrm{A}}}\left|P_{\mathrm{B}} \| \mathcal{M}(l, s)\right|^{2}, \tag{4}\\
\Gamma_{\mathrm{A} \rightarrow \mathrm{~B}+\mathrm{C}}=\sum \Gamma_{\mathrm{A} \rightarrow \mathrm{~B}+\mathrm{C}}^{l, s} . \tag{5}
\end{gather*}
$$

3 Formulation of the meson decay

In the decay $\psi(4415) \rightarrow \mathrm{D} \overline{\mathrm{D}}$, the spatial integral can be expressed as:

$$
\begin{align*}
I_{M_{\mathrm{A}} M_{\mathrm{P}} M_{\mathrm{B}} M_{\mathrm{C}}}^{L_{\mathrm{A}} L_{\mathrm{B}} L_{\mathrm{C}}}\left(\boldsymbol{P}_{\mathrm{B}}\right)= & \sum_{L_{\mathrm{i}}, L_{\mathrm{f}}, l} \mathcal{L}_{L_{\mathrm{i}} L_{\mathrm{f}} l}^{L_{\mathrm{A}} L_{\mathrm{B}} L_{\mathrm{C}}}\left(\left|\boldsymbol{P}_{\mathrm{B}}\right|\right) \times \\
& \sum_{M_{\mathrm{i}}, M_{\mathrm{f}}, m}\left\langle L_{\mathrm{A}} L_{\mathrm{P}} M_{\mathrm{A}} M_{\mathrm{P}} \mid L_{\mathrm{i}} M_{\mathrm{i}}\right\rangle \times \\
& \left\langle L_{\mathrm{B}} L_{\mathrm{C}} M_{\mathrm{B}} M_{\mathrm{C}} \mid L_{\mathrm{f}} M_{\mathrm{f}}\right\rangle \times \\
& \left\langle l L_{\mathrm{f}} m M_{\mathrm{f}} \mid L_{\mathrm{i}} M_{\mathrm{i}}\right\rangle Y_{1}^{M_{\mathrm{P}}}\left(\boldsymbol{P}_{\mathrm{B}}\right), \quad \tag{6}
\end{align*}
$$

where

$$
L_{\mathrm{A}}+L_{\mathrm{P}}=L_{\mathrm{i}}, \quad L_{\mathrm{B}}+L_{\mathrm{C}}=L_{\mathrm{f}}, \quad l+L_{\mathrm{f}}=L_{\mathrm{i}}
$$

With quantum numbers of $\psi(4415), D \bar{D}$ and $q \bar{q}$,

$$
\begin{align*}
& J_{\mathrm{A}}^{P}=1^{-}, L_{\mathrm{A}}=0, S_{\mathrm{A}}=1, I_{1}=I_{2}=0, \\
& J_{\mathrm{B}}^{P}=0^{-}, L_{\mathrm{B}}=0, S_{\mathrm{B}}=0, I_{\mathrm{B}}=\frac{1}{2}, \\
& J_{\mathrm{C}}^{P}=0^{-}, L_{\mathrm{C}}=0, S_{\mathrm{C}}=0, I_{\mathrm{C}}=\frac{1}{2} \tag{7}\\
& J_{\mathrm{P}}^{P}=0^{+}, L_{\mathrm{P}}=1, S_{\mathrm{P}}=1, I_{3}=I_{4}=\frac{1}{2},
\end{align*}
$$

we compute the Clebsch-Gordan coefficients and obtain the reduced I :

$$
\begin{equation*}
I_{0, M_{\mathrm{P}}, 0,0}^{0,0,0}\left(\boldsymbol{P}_{\mathrm{B}}\right)=\mathcal{L}_{1,0,1}^{0,0,0}\left(\left|\boldsymbol{P}_{\mathrm{B}}\right|\right) Y_{1}^{M_{\mathrm{P}}}\left(\boldsymbol{P}_{\mathrm{B}}\right) \tag{8}
\end{equation*}
$$

After we eliminating the total-momentumconserving δ-factor function, the spatial integral reads as:

$$
\begin{align*}
I_{M_{\mathrm{P}}}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})= & \gamma \frac{1}{8} \int \mathrm{~d} \boldsymbol{P} \mathcal{Y}_{1}^{M_{\mathrm{P}}}\left(\boldsymbol{P}_{\mathrm{B}}-\boldsymbol{P}\right) \psi_{\mathrm{B}}^{*}(-\boldsymbol{P}) \times \\
& \psi_{\mathrm{C}}^{*}(\boldsymbol{P}) \psi_{\mathrm{A}}\left(\boldsymbol{P}_{\mathrm{B}}+\boldsymbol{P}\right) \tag{9}
\end{align*}
$$

where γ is the vacuum creation rate, which increases with energy ${ }^{[17]}$.

D is in a $1 S$ state and $\psi(4415)$ is supposed to be in a $4 S$ state or a $5 S$ state, respectively in our calculation. For the reader's convenience, we present below
the harmonic oscillator wave functions in momentum space:

$$
\begin{align*}
& \psi_{1 S}=\left(\frac{R^{2}}{\pi}\right)^{3 / 4} \exp \left(-\frac{1}{2} R^{2} \boldsymbol{P}^{2}\right) \tag{10}\\
& \psi_{4 S}=\left(\frac{R^{2}}{\pi}\right)^{3 / 4} \exp \left(-\frac{1}{2} R^{2} \boldsymbol{P}^{2}\right) \frac{1}{12 \sqrt{35}} \times \tag{12}\\
&\left(-105+210 R^{2} \boldsymbol{P}^{2}-84 R^{4} \boldsymbol{P}^{4}+\right. \\
&\left.8 R^{6} \boldsymbol{P}^{6}\right) \tag{11}
\end{align*}
$$

$$
\begin{aligned}
\psi_{5 S}= & \left(\frac{R^{2}}{\pi}\right)^{3 / 4} \exp \left(-\frac{1}{2} R^{2} \boldsymbol{P}^{2}\right) \frac{1}{72 \sqrt{70}} \times \\
& \left(945-2520 R^{2} \boldsymbol{P}^{2}+1512 R^{4} \boldsymbol{P}^{4}-\right. \\
& \left.288 R^{6} \boldsymbol{P}^{6}+16 R^{8} \boldsymbol{P}^{8}\right)
\end{aligned}
$$

The momentum (\boldsymbol{P}) is half the relative momentum between two quarks that constitute the particle. Then we can obtain the expressions for $\mathcal{L}_{1,0,1}^{0,0,0}\left(\left|\boldsymbol{P}_{\mathrm{B}}\right|\right)$ corresponding to the $4 S$ state and the $5 S$ state, respectively.

$$
\begin{align*}
\mathcal{L}_{1,0,1}^{0,0,0}(4 S)= & \gamma \sqrt{\frac{2}{35}} \mathrm{e}^{\frac{P_{\mathrm{B}}^{2} R_{\mathrm{A}}^{2} R_{\mathrm{B}}^{2}}{-4 R_{\mathrm{A}}^{2}-8 R_{\mathrm{B}}^{2}}} P_{\mathrm{B}}\left(R_{\mathrm{A}}^{2}\right)^{\frac{3}{4}}\left(R_{\mathrm{B}}^{2}\right)^{\frac{3}{2}}\left[105 R_{\mathrm{A}}^{14}-6720 R_{\mathrm{B}}^{14}+3360 R_{\mathrm{A}}^{2} R_{\mathrm{B}}^{12}\left(-6+P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}\right)+\right. \\
& 105 R_{\mathrm{A}}^{12} R_{\mathrm{B}}^{2}\left(-3+2 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}\right)-336 R_{\mathrm{A}}^{4} R_{\mathrm{B}}^{10}\left(5-18 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}+P_{\mathrm{B}}^{4} R_{\mathrm{B}}^{4}\right)+42 R_{\mathrm{A}}^{10} R_{\mathrm{B}}^{4}\left(-50-3 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}+2 P_{\mathrm{B}}^{4} R_{\mathrm{B}}^{4}\right)+ \\
& \left.8 R_{\mathrm{A}}^{6} R_{\mathrm{B}}^{8}\left(1470-42 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}-54 P_{\mathrm{B}}^{4} R_{\mathrm{B}}^{4}+P_{\mathrm{B}}^{6} R_{\mathrm{B}}^{6}\right)+4 R_{\mathrm{A}}^{8} R_{\mathrm{B}}^{6}\left(525-588 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}+9 P_{\mathrm{B}}^{4} R_{\mathrm{B}}^{4}+2 P_{\mathrm{B}}^{6} R_{\mathrm{B}}^{6}\right)\right] \times \\
& \frac{1}{3 \pi^{\frac{3}{4}}\left(R_{\mathrm{A}}^{2}+2 R_{\mathrm{B}}^{2}\right)^{\frac{17}{2}}} ; \tag{13}\\
\mathcal{L}_{1,0,1}^{0,0,0}(5 S)= & \gamma \frac{1}{18 \sqrt{35}} \mathrm{e}^{\frac{P_{\mathrm{B}}^{2} R_{\mathrm{A}}^{2} R_{\mathrm{B}}^{2}}{-4 R_{\mathrm{A}}^{2}-8 R_{\mathrm{B}}^{2}}} P_{\mathrm{B}}\left(R_{\mathrm{A}}^{2}\right)^{\frac{3}{4}}\left(R_{\mathrm{B}}^{2}\right)^{\frac{3}{2}}\left[945 R_{\mathrm{A}}^{18}+241920 R_{\mathrm{B}}^{18}-80640 R_{\mathrm{A}}^{2} R_{\mathrm{B}}^{16}\left(-11+2 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}\right)+\right. \\
& 315 R_{\mathrm{A}}^{16} R_{\mathrm{B}}^{2}\left(-13+8 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}\right)+8064 R_{\mathrm{A}}^{4} R_{\mathrm{B}}^{14}\left(10-44 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}+3 P_{\mathrm{B}}^{4} R_{\mathrm{B}}^{4}\right)+ \\
& 504 R_{\mathrm{A}}^{14} R_{\mathrm{B}}^{4}\left(-50-7 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}+3 P_{\mathrm{B}}^{4} R_{\mathrm{B}}^{4}\right)-1152 R_{\mathrm{A}}^{6} R_{\mathrm{B}}^{12}\left(630-21 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}-33 P_{\mathrm{B}}^{4} R_{\mathrm{B}}^{4}+P_{\mathrm{B}}^{6} R_{\mathrm{B}}^{6}\right)+ \\
& 72 R_{\mathrm{A}}^{12} R_{\mathrm{B}}^{6}\left(630-588 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}-3 P_{\mathrm{B}}^{4} R_{\mathrm{B}}^{4}+4 P_{\mathrm{B}}^{6} R_{\mathrm{B}}^{6}\right)+16 R_{\mathrm{A}}^{8} R_{\mathrm{B}}^{10}\left(-9450+13608 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}-\right. \\
& \left.\left.324 P_{\mathrm{B}}^{4} R_{\mathrm{B}}^{4}-88 P_{\mathrm{B}}^{6} R_{\mathrm{B}}^{6}+P_{\mathrm{B}}^{8} R_{\mathrm{B}}^{8}\right)+16 R_{\mathrm{A}}^{10} R_{\mathrm{B}}^{8}\left(13230+1134 P_{\mathrm{B}}^{2} R_{\mathrm{B}}^{2}-972 P_{\mathrm{B}}^{4} R_{\mathrm{B}}^{4}+10 P_{\mathrm{B}}^{6} R_{\mathrm{B}}^{6}+P_{\mathrm{B}}^{8} R_{\mathrm{B}}^{8}\right)\right] \times \\
& \frac{1}{\pi^{\frac{3}{4}}\left(R_{\mathrm{A}}^{2}+2 R_{\mathrm{B}}^{2}\right)^{\frac{21}{2}}} . \tag{14}
\end{align*}
$$

Table 1. Feynman amplitudes of the decays.

orbit	Feynman amplitude
$\mathrm{D} \overline{\mathrm{D}}$	$\mathcal{M}_{1,0}=-\mathrm{i} \frac{\sqrt{2}}{6} \mathcal{L}_{1,0,1}^{0,0,0}\left(\left\|\boldsymbol{P}_{\mathrm{B}}\right\|\right)$
$\mathrm{D}^{*} \overline{\mathrm{D}}^{*}$	$\mathcal{M}_{1,0}=-\mathrm{i} \frac{1}{3 \sqrt{6}} \mathcal{L}_{1,0,1}^{0,0,0}\left(\left\|\boldsymbol{P}_{\mathrm{B}}\right\|\right), \quad \mathcal{M}_{1,1}=0$,
$\mathrm{M}_{\mathrm{S}} \overline{\mathrm{D}}_{\mathrm{S}}$	$\mathcal{M}_{1,0}=-\mathrm{i} \frac{\sqrt{10}}{3 \sqrt{3}} \mathcal{L}_{1,0,1}^{0,0,0}\left(\left\|\boldsymbol{P}_{\mathrm{B}}\right\|\right)$
$\mathrm{D}_{\mathrm{S}}^{*} \overline{\mathrm{D}}_{\mathrm{S}}^{*}$	$\mathcal{M}_{1,0}=-\frac{\sqrt{2}}{6 \sqrt{6}} \mathcal{L}_{1,0,1}^{0,0,0}\left(\left\|\boldsymbol{P}_{\mathrm{B}}\right\|\right)$
	$\mathcal{L}_{1,0,1}^{0,0,0}\left(\left\|\boldsymbol{P}_{\mathrm{B}}\right\|\right), \quad \mathcal{M}_{1,1}=0$,

With the quantum numbers of Eq. (7) as input and the Wigner ($6-\mathrm{j}$ and $9-\mathrm{j}$) coefficients, we calculate $\mathcal{M}(l, s)$ for the decays $\psi(4415) \rightarrow \mathrm{D} \overline{\mathrm{D}}$ taking $\psi(4415)$ as a $4 S$ state and $5 S$ state, respectively. In $\mathcal{M}(l, s)$ only the expressions $\mathcal{L}_{1,0,1}^{0,0,0}\left(\left|\boldsymbol{P}_{\mathrm{B}}\right|\right)$ corresponding to the two states are different:

$$
\begin{equation*}
\mathcal{M}_{1,0}=-\mathrm{i} \frac{\sqrt{2}}{6} \mathcal{L}_{1,0,1}^{0,0,0}\left(\left|\boldsymbol{P}_{\mathrm{B}}\right|\right) \tag{15}
\end{equation*}
$$

In the same way, we calculate the decays
$\psi(4415) \rightarrow\left(\mathrm{D}^{*} \overline{\mathrm{D}}^{*}, \mathrm{D}_{\mathrm{S}} \overline{\mathrm{D}}_{\mathrm{S}}, \mathrm{D}_{\mathrm{S}}^{*} \overline{\mathrm{D}}_{\mathrm{S}}^{*}\right)$, and obtain the corresponding Feynman amplitudes $\mathcal{M}(l, s)$. The results are given in the following Table 1.

Thus, supposing $\psi(4415)$ is the $4 S$ state or $5 S$ state, we obtain the widths and branching ratios of the decays, from Eqs. (4) and (5).

4 Numerical results

In order to obtain the relevant parameters we use the experimental results of $\psi(4040) \rightarrow$ $\mathrm{D} \overline{\mathrm{D}}, \mathrm{D}^{*} \overline{\mathrm{D}}^{*}, \mathrm{D}_{\mathrm{S}} \overline{\mathrm{D}}_{\mathrm{S}}{ }^{[15,17,18]}$, and after some numerical calculation, we obtain the values of R_{S}^{2} and $\gamma_{\mathrm{u}, \mathrm{d}}$ in the harmonic oscillator wave functions: $R_{\mathrm{A}}^{2}=$ $6.00 \mathrm{GeV}^{-2}, R_{\mathrm{D}}^{2}=5.25 \mathrm{GeV}^{-2}, R_{\mathrm{D}^{*}}^{2}=6.70 \mathrm{GeV}^{-2}$, $R_{\mathrm{D}_{\mathrm{s}}}^{2}=5.20 \mathrm{GeV}^{-2}, \gamma_{\mathrm{u}, \mathrm{d}}=3$. There are not enough data to determine $R_{\mathrm{D}_{\mathrm{s}}^{*}}^{2}$ and γ_{s}, so we invoke the theoretical assumption ${ }^{[2,15]}, \gamma_{\mathrm{s}}=\frac{\gamma_{\mathrm{u}, \mathrm{d}}}{\sqrt{3}}$ and $R_{\mathrm{D}_{\mathrm{s}}}^{2}=R_{\mathrm{D}_{\mathrm{s}}^{*}}^{2}$. So we can calculate the widths and branching ratios with the above parameters and the masses of the initial and final state particles: $m_{\mathrm{A}}=4.415 \mathrm{GeV}$, $m_{\mathrm{D}}=1.869 \mathrm{GeV}, m_{\mathrm{D}^{*}}=2.01 \mathrm{GeV}, m_{\mathrm{D}_{\mathrm{S}}}=1.968 \mathrm{GeV}$, $m_{\mathrm{D}_{\mathrm{S}}^{*}}=2.112 \mathrm{GeV}$. With the above parameters we ob-
tain the numerical results shown in Table 2.
Table 2. The first set of numerical results.

	$4 S$			$5 S$	
	Γ / MeV	$\mathcal{B}(\%)$		Γ / MeV	$\mathcal{B}(\%)$
$\mathrm{D} \overline{\mathrm{D}}$	0.95	2.2		0.00022	0.0005
$\mathrm{D}^{*} \overline{\mathrm{D}}^{*}$	13.3	31.0		5.08	11.8
$\mathrm{D}_{\mathrm{S}} \overline{\mathrm{D}}_{\mathrm{S}}$	0.088	0.21		0.0058	0.014
$\mathrm{D}_{\mathrm{S}}^{*} \overline{\mathrm{D}}_{\mathrm{S}}^{*}$	0.17	0.39		0.0014	0.0033

In Table 2, we find that the results are tiny. As indicated by Yaouanc ${ }^{[17]}$, the vacuum creation rate γ can be larger at higher energies, so we adjust the parameters as: $\gamma_{\mathrm{s}}=\gamma_{\mathrm{u}, \mathrm{d}}=3.5, R_{\mathrm{D}_{\mathrm{S}}}^{2}=R_{\mathrm{D}_{\mathrm{S}}^{*}}^{2}=$ $6.65 \mathrm{GeV}^{-2}$. Then we repeat the calculation, the results being shown in Table 3.

Table 3. The second set of numerical results.

	$4 S$			$5 S$	
	Γ / MeV	$\mathcal{B}(\%)$		Γ / MeV	$\mathcal{B}(\%)$
$\mathrm{D} \overline{\mathrm{D}}$	1.30	3.0		0.00030	0.0007
$\mathrm{D}^{*} \overline{\mathrm{D}}^{*}$	18.2	42.2		6.91	16.1
$\mathrm{D}_{\mathrm{S}} \overline{\mathrm{D}}_{\mathrm{S}}$	1.50	3.5		0.28	0.65
$\mathrm{D}_{\mathrm{S}}^{*} \overline{\mathrm{D}}_{\mathrm{S}}^{*}$	6.04	14.0		0.29	0.67

Other parameters are also suitable. For example with $R_{\mathrm{A}}^{2}=6.20 \mathrm{GeV}^{-2}, R_{\mathrm{D}}^{2}=5.55 \mathrm{GeV}^{-2}, R_{\mathrm{D}^{*}}^{2}=$ $7.10 \mathrm{GeV}^{-2}, R_{\mathrm{D}_{\mathrm{s}}}^{2}=R_{\mathrm{D}_{\mathrm{s}}^{*}}^{2}=5.35 \mathrm{GeV}^{-2}, \gamma_{\mathrm{s}}=\frac{\gamma_{\mathrm{u}, \mathrm{d}}}{\sqrt{3}}$, $\gamma_{\mathrm{u}, \mathrm{d}}=3$, we obtain the results of Table 4.

Table 4. The third set of numerical results.

	$4 S$			$5 S$	
	Γ / MeV	$\mathcal{B}(\%)$		Γ / MeV	$\mathcal{B}(\%)$
$\mathrm{D} \overline{\mathrm{D}}$	1.03	2.4		0.00011	0.0003
$\mathrm{D}^{*} \overline{\mathrm{D}}^{*}$	18.4	42.7		6.52	15.2
$\mathrm{D}_{\mathrm{S}} \overline{\mathrm{D}}_{\mathrm{S}}$	0.091	0.21		0.0050	0.012
$\mathrm{D}_{\mathrm{S}}^{*} \overline{\mathrm{D}}_{\mathrm{S}}^{*}$	0.13	0.31		0.00053	0.0012

If we adjust ${ }^{[17]}$ the parameters on the basis of the third set of parameters, $\gamma_{\mathrm{s}}=\gamma_{\mathrm{u}, \mathrm{d}}=3.5, R_{\mathrm{D}_{\mathrm{S}}}^{2}=R_{\mathrm{D}_{\mathrm{S}}^{*}}^{2}=$ $6.90 \mathrm{GeV}^{-2}$, and we obtain the results of Table 5 .

Table 5. The fourth set of numerical results.

	$4 S$			$5 S$	
	Γ / MeV	$\mathcal{B}(\%)$		Γ / MeV	$\mathcal{B}(\%)$
$\mathrm{D} \overline{\mathrm{D}}$	1.41	3.3		0.00016	0.0004
$\mathrm{D}^{*} \overline{\mathrm{D}}^{*}$	25.0	58.1		8.87	20.6
$\mathrm{D}_{\mathrm{S}} \overline{\mathrm{D}}_{\mathrm{S}}$	1.68	3.9		0.28	0.66
$\mathrm{D}_{\mathrm{S}}^{*} \overline{\mathrm{D}}_{\mathrm{S}}^{*}$	5.49	12.8		0.22	0.51

5 Discussion and conclusion

In this work, we study the decays of $\psi(4415)$ considering it to be in a $4 S$ state or in a $5 S$ state, respectively and obtain the corresponding branching ratios in the QPC model. In Table 2 and Table 4, the all numerical values are tiny, so we have to adjust some parameters by a recipe given by Yaouanc ${ }^{[17]}$. This way we obtain the results given in Table 3 and Table 5 , which are more reasonable.

From all four tables we find that, the numerical results for $\psi(4415)$ being a $5 S$ state are small, especially in the decay channel $\psi(4415) \rightarrow \mathrm{D} \overline{\mathrm{D}}$. It is obvious that, the numerical results for $\psi(4415)$ being the $5 S$ state can not match the experimental data ${ }^{[18]}$ well. The numerical results for the $4 S$ state are about three times those of the $5 S$ state. Compared with the experimental data, the numerical results of the $4 S$ state are more reasonable than those of the $5 S$ state. Our result is consistent with Yaouanc's point of view ${ }^{[17]}$. The conclusion of our work is then that the $\psi(4415)$ is most likely a $4 S$ state.

References

Close F E, Page P R. Phys. Lett. B, 1996, 366: 323-328
2 Yaouanc A Le, Oliver L, Pène O et al. Phys. Rev. D, 1973, 8: 2223; Phys. Rev. D, 1974, 9: 1514; Phys. Rev. D, 1975, 11: 1272; Phys. Lett. B, 1977, 71: 57; Phys. Lett. B, 1977, 72: 57
3 DING Y B, CHAO K T, QIN D H. Phys. Rev. D, 1995, 51: 5064-5068
4 CHAO K T. arXiv: hep-ph/0707.3892
5 Micu L. Nucl. Phys. B, 1969, 10: 521
6 Blundell H G, Godfrey S. Phys. Rev. D, 1996, 53: 3700; Capstick S, Isgur N. Phys. Rev. D, 1986, 34: 2809
7 Page P R. Nucl. Phys. B, 1995, 446: 189
8 Yaouanc A Le, Oliver L, Pène O et al. Phys. Lett. B, 1977, 71: 397; Phys. Lett. B, 1977, 72: 57
9 Capstick S, Roberts W. Phys. Rev. D, 1994, 49: 4570

10 Ackleh E S, Barnes T. Phys. Rev. D, 1996, 54: 6811
11 Harry G. Blundell. arXiv:hep-ph/9608473
12 PING R G, JING H Q, SHEN P N et al. Chin. Phys. Lett., 2002, 19: 1592
13 ZHOU H Q, PING R G, ZOU B S. Phys. Lett. B, 2005, 611: 123
14 LU J, CHEN X L, DENG W Z et al. Phys. Rev. D, 2006, 73: 054012
15 GUO X H, KE H W, LI X Q et al. Commun. Theor. Phys., 2007, 48: 509-518
16 ZHANG B, LIU X, DENG W Z et al. Eur. Phy. J. C, 2007, 50: 617-628
17 Yaouanc A Le, Oliver L, Pène O et al. Hadron Transitions in the Quark Model. New York: Gordon and Breach Science Publishers, 1987. 233-250
18 BES Collaboration. Phys. Rev. D, 2000, 62: 012002

[^0]: Received 19 November 2007，Revised 29 February 2008
 ＊Supported by Natural Science Fund of Hebei Province（A2005000090，E2005000129），Fund of Education Department of Hebei Province（2007409）and Research Fund for Doctoral Programs of Hebei University（Y2006081）

 1）E－mail：lzht44＠163．com

