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Short range correlations between nucleons in

finite nuclei *

ZHOU Li-Juan(±wï)1;1) MA Wei-Xing(ê�,)1,2;2)

1 (Collaboration Group of Hadron Physics and Non-Perturbative QCD Study,
Guangxi University of Technology, Liuzhou 545006, China)

2 (Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China)

Abstract The short-range correlation between nucleons in finite nuclei is investigated in high energy proton-

nucleus and α-nucleus elastic scattering in the framework of Glauber multiple scattering theory without any

free parameters. The effects on the p-4He and 4He-12C elastic scattering, and in particular on the proton elastic

scattering off hallo-like nuclei, 6,8He, are estimated. Our calculations show that the short-range correlations

play an important role in reproducing experimental data and could be also thought of as being possible origin

and nature of halo-like phenomena in the nuclear structure. More accurate calculations along this line are

needed.
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1 Introduction

In many-body physics the word correlation indi-

cates effects beyond Mean-Field Theories. In nuclear

physics it is common to distinguish the short range

correlation from the long range ones. Nuclear col-

lective phenomena such as vibrations and rotations

are ruled by long-range correlations. These effects

are well known and studied since the infancy of nu-

clear physics. On the contrary the study of the short

range correlations is a relatively new issue[1] in nu-

clear physics, in particular, nobody uses the idea to

explain the nuclear halo-like phenomena. This cor-

relation is produced by the strong repulsive core of

the microscopic nucleon-nucleon interaction at short

inter-nucleon distances. In spite of the fact that all

the microscopic nuclear theories need the short range

correlation, clear signatures of their presence in nuclei

have not yet been identified.

In this paper, we discuss the importance of short

range nuclear correlations in finite nucleus. To show

the importance we make some parameter free calcu-

lations of proton-nucleus and nucleus- nucleus elastic

scattering at intermediate energies, in particular pro-

ton elastic scattering on halo-like nucleus. In Sect. 2,

we briefly introduce the description of the short range

correlations and some related formulae used in this

calculations. In Sect. 3, we present our numerical cal-

culations and theoretical results. Some discussions on

the current predictions are also given in this section.

We reserve our summary and concluding remarks for

Sect. 4.

2 Nuclear wave function with short

range correlations

The many-body nuclear state can be described

within the framework of the Correlated Basis Func-

tion Theory[2] by the wave function

|Ψ〉=F |Φ0〉 , (1)

where | Φ0〉 = ΨSD(r1, · · · ,rA) indicates a ground

state Slater determinant constructed with a set of or-

thonormal single particle wave functions | φ〉, and F
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is a many-body correlation function defined as

F =S
∏

i<j

{

n
∑

p=1

fp(rij) •Op(i, j)
}

, (2)

where S in Eq. (2) indicates a symmetrizer operator.

The two-body correlation functions f p(rij) have an

operatorial dependence of the same type of that of

the nucleon - nucleon interaction. In the present cal-

culations we consider correlations up to p= 8 of the

type:

Op=1,8(i, j) = [1,σ(i) •σ(j),S(i, j),L(i, j) • S(i, j)]⊗
[τ (i) • τ (j)], (3)

where S(i, j) is the usual tensor operator. If we only

consider the scalar contribution of Eq. (3), the nuclear

wave functions of Eq. (1) with two-body correlations

between nucleons in a finite nuclei become[3] to

|Ψ〉≡|Ψ〉JC =

A
∏

i>j=1

f(rij) |Φ0〉 . (4)

The wave function of Eq. (4) is called Jastrow wave

function[3] of nuclear structure and dubbed as |Ψ〉JC .

This wave function gives a good description of the

nuclear short range correlation in finite nuclei. The

Slater determinant |Φ0〉 in Eqs. (1,4) takes the Pauli

effect into consideration. f(rij) represents nuclear

two-body short range correlation factor and satisfies

f(rij) =

{

0, if rij 6h,

1, if rij >h.
(5)

where rij =| ri − rj | is inter-nucleon separation

and h is referred to the so-called “healing distance”.

Clearly, when the inter-nucleon separation rij is less

than the healing distance h the nuclear wave function

|Ψ〉JC becomes zero. That means there is a strong re-

pulsive core of the microscopic nucleon-nucleon inter-

action at short inter-nucleon distance which prevents

nucleons from getting closer together.

It has been proven that Jastrow wave function,

| Ψ〉JC in Eq. (4), could be rewritten as a new modi-

fied Slater determinant[4]

|Ψ〉JC =
1√
A!

‖φ̃α‖, (6)

with

φ̃α(r1) = φα(r1)
{

1−
∑

α6=β

〈β(2) | g(r12) |β(2)〉+

∑

α 6=β 6=γ

〈β(2)γ(3) | g(r12)g(r13)+ · · ·

|β(2)γ(3)〉+ · · ·
}

, (7)

where g(rij) is the so-called “auxiliary correlation fac-

tor”, and g(rij) =| f(rij) |2 −1. g(rij) is zero outside

the region in which f(rij) differs from zero. As the

usual way, we take g(rij) = J0(qcr) with qc being cor-

relation parameter and is taken to be qc = 300 MeV/c

in this calculation. For light nuclei, calculation of

Eq. (7) leads us to the following expressions

φ̃1s(r) =A1sφ1s(r)+A2sφ2s(r)+A3sφ3s(r)+ · · · , (8)

φ̃1p(r) =A1pφ1p(r)+A2pφ2p(r)+A3pφ3p(r)+ · · · . (9)

Eqs. (8) and (9) show that the short range correlation

is just an effect which caused an admixture of differ-

ent states with identical orbital quantum number (l)

but different principal quantum numbers (N). To a

good approximation for light nuclei, Eqs. (8,9) can be

truncated and then expressed as

φ̃1s(r) =A1sφ1s(r)+A2sφ2s(r) , (10)

φ̃1p(r) =A1pφ1p(r)+A2pφ2p(r) . (11)

with A1s = 0.9624, A2s = 0.2719, A1p = 0.9431 and

A2p = 0.3324 which had been determined by us in our

early publications of Refs. [3,4].

3 Numerical calculations and results

We show the importance of nuclear short range

correlations in finite nuclei by calculating proton-

nucleus and nucleus-nucleus elastic scattering at in-

termediate energies. In particular, we repay our at-

tentions on the scattering of proton on the halo-like

nucleus 6,8He which may reveal the dynamical origin

and nature of halo-like phenomena. We start by re-

calling the formalism of Glauber multiple scattering

theory[5], which is the framework of our current inves-

tigation. For hadron-nucleus scattering in Glauber

theory with Coulomb effect taken into account, the

relevant scattering amplitude can be written as

Ffi(q) =Fc(q)δfi +Hc.m.(q)
ik

2π

∫
eiq·bΓc

fi(b)d2b , (12)

where Fc(q) is the Coulomb scattering amplitude for

a point charge target and is given by Refs. [6,7]

Fc(q) =−2ξ
k

q2
eiφc , (13)

with

φc =−2ξ ln
( q

2k

)

+2η, ξ=−Zαm
k
. (14)

Here Z is the charge number of the target nucleus, m

is the nucleon mass, α= 1/137 and k denotes the ini-

tial wave number in the center-of-mass system. The

quantity η is defined by

η = argΓ (1+iξ) = ξψ(x= 1)+

+∞
∑

n=0

(

1+
ξ

1+n
−arctan

ξ

1+n

)

, (15)
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where ψ(x) is the digamma function and ψ(x= 1) =

−0.57721. The Γ (1+iξ) in Eq. (15) is Euler’s gamma

function. The notation arg stands for the principal

argument of a complex number Γ (1+iξ).

Hc.m.(q) = exp(q2/4Aα′) is the center-of- mass

correction factor[7] with α′ being harmonic oscillator

parameter of the target nucleus.

The Coulomb corrected profile function Γ c
fi(b) in

Eq. (12) is defined by

Γ c
fi(b) = eixc(b)δfi−eix̃c(b)δfi−Γfi(b) , (16)

where xc and x̃c are Coulomb phase shift for a point-

like charge and an extended charge distribution, re-

spectively. They are given by

xc(b) = 2ξ ln(kb), x̃c(b) =xc(b)+ x̄c(b) , (17)

with

x̄c(b) = 2ξ4πb3
∫1

0

dx
1

x4
ρc

(

b

x

)

×
[

ln

(

1+
√

1−x2

x

)

−
√
x−x2

]

, (18)

where ρc(b/x) is the charge distribution of the target

nucleus. For instance, three parameters Fermi distri-

bution,

ρc(r) = ρ0

1+wr2/c2

1+e(r−c)/Z′
, (19)

is widely used with parameters c, Z ′, w which vary

as the change of nucleus and are given in Table 1[7],

i.e.

Table 1. The parameters c, Z ′, and w for vari-
ous nucleus: A=4, 12, 15, 16, and 40.

nucleus c Z′ w
4He 0.964 0.323 0.517
12C 2.355 0.522 −0.149
15N 2.334 0.498 0.139
16O 2.608 0.513 −0.051
40Ca 3.766 0.586 −0.161

The nuclear charge density distribution, ρc(r), has

been accurately determined by many experiments of

electron-nucleus scattering. Given ρc(r), the x̄c(b)

can be easily obtained by carrying out numerically

the integration over b in Eq. (18).

Γfi(b) in Eq. (16) is the nuclear profile function

and defined by the following identity (see Ref. [4]).

Γfi(b) = 〈ψf | 1−
A

∏

j=1

[

1−Γj(b−sj)
]

|ψi〉 , (20)

where ψf and ψi are the final and initial nuclear state

wave functions, respectively. The Γj(b− sj) is the

two-dimensional Fourier transform of elementary two-

body scattering amplitude fj(q),

Γj(b−sj) =
1

2πik

∫
e−iq(b−sj)fj(q)d2q . (21)

In the case of proton - nucleus scattering, the j de-

notes projectile scattering off the j-th nucleon in tar-

get. Of course, fj(q) is of spin-isospin dependence

two-body amplitude. For our present purpose we ne-

glect the spin-flip parts of the two-body amplitude

fj(q), and parameterize the central part of fj(q) as

fj(q) =
ikσj

4π

(1− iρj)e
−β2

j q2/2 , (22)

where σj , ρj and βj are respectively total cross sec-

tion, ratio of the real-to-imaginary part of forward

scattering amplitude, and slope parameter of the am-

plitude for two body scattering. They are of energy-

dependence, and determined by experiment. To per-

form the calculation of the scattering amplitude, suffi-

ciently accurate values of these parameters are needed

since they are the fundamental input data. In this

work, the values of σpp and ρpp have been deduced

by interpolation of the results from a free pp scat-

tering phase shift analysis[8]. For the pn scattering,

the available data on the elementary cross sections

are more scarce and even partly inconsistent. We

choose the values for σpn and ρpn from Ref. [9]. The

slope parameters βpn are obtained from Ref. [8]. No

difference has been made between βpp and βpn, and

they are taken to be βpp =βpn = 0.17 fm2. All the pa-

rameters used in this calculation are listed in Table 2.

Table 2. The parameters of the pn scattering
amplitude used in the present calculations. E
is the incident particle energy.

target E/ σpp/ σpn/ βpp=
nucleus GeV mb

ρpp
mb

ρpn
βpn/fm2

4He 0.702 43.5 0.095 37.6 −0.297 0.17
6He 0.721 44.6 0.069 37.7 −0.307 0.17
8He 0.678 41.9 0.129 37.4 −0.283 0.17
12C 1.370 43.2 0.230 37.5 −0.290 0.17

Using the Jastrow wave function given by Eq. (6), the

nuclear matrix elements in the Glauber amplitude,

Eq. (20), can be expressed as
〈

ψJC | 1−
A

∏

j 6=1

[1−Γj(b−sj)] |ψJC

〉

= 1−‖Õnm‖,

(23)

where

Õnm = δnm−
∫
φ̃∗

m(r)Γ (b−s)φ̃n(r)d3r . (24)

where φ̃ are given by Eqs. (10,11). Using all in-

gredients discussed above the total elastic scattering

amplitude Fii(q) for proton-nucleus elastic scattering

(f = i), and consequently the differential cross sec-

tion can be obtained from Eq. (12) and definition of

dσ/dt=|Fii(q) |2.
For 4He-12C elastic scattering, the scattering

amplitude given by Glauber theory can be expressed
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as

Fα(q) =
ik

2π

∫
d2beiq·b{1−〈Ψ(12C) | ×

∏

j∈12C

〈Ψ(4He) |
∏

k∈α

[1−Γ (b−sj +sk)]×

|Ψ(4He)〉 |Ψ(12C)〉}. (25)

where sj is the projected vector of the j-th nucleon

space coordinate vector rj which is perpendicular to

the incident plane. Using this formulism the differ-

ential cross section for 4He-12C can be predicted nu-

merically.

Within the framework of Glauber multiple scat-

tering theory and neglecting the spin-flip effect, we

made parameter free calculations of p-4He and 4He-
12C elastic scattering at intermediate energy region.

The theoretical predictions are shown in Figs. 1—2.

Fig. 1. Effect of nuclear short range correlation
on the differential cross section of p-4He elastic
scattering at the incident proton energy of 1.0
GeV. The solid curve is our prediction of the
short range correlation wave function, Eq. (6),
while the dashed line denotes the prediction by
use of double Gaussian nuclear wave function
of 4He. The data come from Ref. [10].

As we can see from Figs. 1—2, the short range corre-

lation clearly plays an essential role in fitting experi-

mental data. Particularly, our theoretical predictions

on 4He-12C elastic scattering at the energy of 1.37

GeV in Fig. 2 evidently show the importance of the

nucleon short range correlation. The Jastrow wave

functions with the short range correlations between

nucleons taken into consideration reproduce the data

very well. We got an excellent agreement with data

until the 3-rd maximum of the differential cross sec-

tion of 4He-12C elastic scattering.

Fig. 2. Differential cross section of 4He-12C
heavy ion elastic scattering at the incident
energy of 1.37 GeV. The solid curve stands
for the prediction of Jastrow wave function,
Eq. (6), while the dotted curve denotes the
prediction without short range correlation
taken into consideration. The data come from
Ref. [11].

Fig. 3. Differential cross section dσ/dt versus
the four momentum transfer squared t for
p-4He, p-6,8He elastic scattering at the pro-
ton Laboratory energies of Ep = 0.702 GeV,
0.721 GeV and 0.678 GeV, respectively. The
solid curves are the results predicted by Jas-
traw wave function, Eq. (6), while the solid

points are experimental data
[10]

.
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In order to emphasize once again the importance

of the nuclear short range correlations, in Fig. 3 we

re-show our previous calculations of differential cross

sections of the proton elastic scattering at the energy

about 1 GeV on the halo-like nuclei 6,8He[3b]. As is

seen from Fig. 3, we obtained perfect fits to experi-

mental data available without using any free param-

eters. Recently, it has been claimed by many that

proton-nucleus elastic scattering at the energy region

of about 1 GeV is a perfect tool[7] to study halo-like

phenomena. Therefore, our excellent fit to the data

may indicate that the dynamical origin of halo-like

phenomena could be the short range correlations be-

tween nucleons in finite halo-like nuclei.

4 Summary and concluding remarks

We study the importance of nucleonic short range

correlations in finite nucleus in proton - nucleus and

α-nucleus elastic scattering at intermediate energies

within the framework of Glauber theory without any

free parameters. Our parameter free calculations

show that the short range correlations between nu-

cleons in target nucleus play an important role in

reproducing experimental data, in particular at high

momentum transfers. The data on all He isotopes are

well described in terms of the Jastrow wave function

which takes the nuclear short range correlations into

account. All the results evidently show that this ef-

fect must be included in an accurate calculation of

any observable, and that the possible origin of an

extended neutron halos in 6,8He. For the later, the

reason is due to the fact that the short range nuclear

force causes an mixture of different states with identi-

cal orbital quantum number (l) but different principal

quantum numbers (N) which makes nucleus extended

largely so that it has a larger size comparing with that

predicted by the theory of nuclear structure without

considering the short range correlation as done so far.

Therefore, it might be possible to claim that nuclear

short range correlation could be the origin and nature

of the halo-like phenomena of nuclear structure. This

may be a very important result for halo-like nucleus

study.
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