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Abstract Triple-gluon elastic scatterings ggg → ggg and triple-quark elastic scatterings qqq → qqq are

studied. The H-theorem extended to the transport equations with the 3 → 3 elastic scatterings is proved. A

short thermalization time for gluon matter and a long thermalization time for quark matter are results of the

transport equations.
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1 Introduction

Quark-gluon plasma (QGP) is taken as a (lo-

cally) thermally equilibrated state of matter in which

quarks and gluons are deconfined from hadrons, so

that color degrees of freedom become manifest over

nuclear, rather than merely nuleonic, volumes
[1]

. In

order to assert that QGP is observed, whether or

not a thermal state is established must be confirmed.

Therefore, the study of thermalization is a very im-

portant and basic task in gold-gold nuclear collisions

at the Relativistic Heavy Ion Collider (RHIC)
[1, 2]

.

Because the deconfined matter has a limited life-time

of a few fm/c
[3]

, the thermalization must be com-

pleted before the deconfined matter fades. Fortu-

nately, a thermalization time of the order less than

1fm/c is concluded from the hydrodynamic calcula-

tions of the low-pT elliptic flow of hadrons observed

at RHIC
[4—9]

. The rapid thermalization i.e. the early

thermalization that takes place in a time less than

1fm/c is a new phenomenon that does support the

existence of QGP. Then explaining the early ther-

malization from QCD is a very important task. The

two-parton to two-parton scatterings and 2→ 3 scat-

terings give a thermalization time greater than 1fm/c

for gluon matter
[10, 11]

. The 3-to-3 gluon elastic scat-

terings can reduce the thermalization time of gluon

matter to be smaller than 1fm/c
[12]

. The occurrence

of the 3-to-3 gluon elastic scatterings is the result of

high gluon number density that is achieved in ini-

tial Au-Au collisions at RHIC energies. The early

thermalization is an effect of the 3-to-3 gluon elastic

scatterings. We can expect that the many-body color

interactions play an important role in ultrarelativistic

heavy-ion collisions
[13]

.

In Au-Au collisions the two incoming beams con-

tain partons moving along the beam directions. Hard

and semihard scatterings produce partons which

mostly distribute near the beam directions. Hence

the distribution of partons is anisotropic in the initial

Au-Au collisions. On the other hand, the produced

partons are within a pancake volume since the two

incoming nuclei are highly Lorentz-contracted along

the beam directions, then the density of produced

partons can be very high, for instance, 38fm−3. Scat-

terings of such high density partons will convert the

anisotropic distribution into an isotropic distribution.

The 3-parton elastic scatterings are important in the

convertion process since the ratio of the number of

3-parton scatterings to the number of 2-parton scat-

terings is around 0.7
[14]

. The counting of the number

of three-parton scatterings or two-parton scatterings
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is based on an anisotropic momentum distribution ob-

taind from the HIJING simulation
[15]

for initial cen-

tral Au-Au collisions at
√

sNN = 200GeV. If the dis-

tance of two partons is smaller than a given interac-

tion range, a scattering of the two partons occurs. If

three partons are within a sphere whose center is the

center of mass of the three partons and whose radius

equals the given interaction range, a scattering of the

three partons occurs. For a typical interaction range

that is larger than 0.1fm, the ratio varies around 0.7.

The value of the ratio convinces us of the importance

of the three-parton scatterings at high parton number

density.

Quark-gluon matter contains gloun matter, quark

matter and antiquark matter. The thermalization of

gluon matter and quark matter is individually studied

for the understanding of the role of the three-gluon

elastic scatterings or of the three-quark elastic scat-

terings. In the next section, the three-gluon elastic

scatterings and the three-quark elastic scatterings are

stated briefly. Transport equations and numerical re-

sults are given in Section 3 and the summary is given

in the last section.

2 Three-gluon and three-quark elastic

scatterings

The three-gluon scatterings ggg → ggg are very

complicated processes. Diagrams of the three-gluon

elastic scatterings and the three-quark elastic scat-

terings in the present work are at tree level that is of

order α4
s . Of all the diagrams six typical diagrams as

shown in Figs. 1 and 2 are selected to illustrate the

elastic scattering processes.

The process shown by the diagram B∼∼ indicates

that three initial gluons at a space-time point are

annihilated by a four-gluon coupling into a virtual

gluon, which will decay into three final real gluons at

another space-time point. The squared amplitude of

this diagram can be derived by hand and the complex-

ity of the derivation originates from products of eight

SU(3) structure constants and products of the six po-

larization 4-vectors for the six gluons. The squared

amplitude obtained in Appdendix A depends only on

the center-of-mass energy of the three initial gluons,

√
s, in an inverse square form.

Fig. 1. The scatterings of three gluons.

Fig. 2. The scatterings of three quarks.

The diagram BU involves two initial gluons anni-

hilating into a virtual gluon which decays into two

final real gluons with radiating or absorbing a virtual

gluon interacting with the other initial gluon. The

diagram B∼+ indicates that two initial gluons scat-

ter into a final real gluon and a virtual gluon which

scatters with the other initial gluon into two final real

gluons. The diagram B∼−4(56) shows that two initial

gluons scatter into two final real gluons and one vir-

tual gluon which is absorbed by the other initial gluon

to form a final real gluon, and the three final gluons

exchange. The squared amplitudes of the three dia-

grams can not be derived by hand and instead have

to be derived by Fortran codes.

In Diagram A-, two on-shell initial quarks scatter

into an on-shell quark and an off-shell quark which

scatters further with the other on-shell initial quark

to produce two on-shell quarks. In Diagram A∗ three

on-shell initial quarks scatter into three on-shell final

quarks by the triple-gluon coupling.
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3 Transport equations and results

The spin- and color-averaged squared amplitude

of the 3-to-3 gluon elastic scatterings contributes to

the variation of gluon distribution in gluon matter by

the transport equation

∂fg1

∂ t
+v1

•∇rfg1 = − gG

2E1

∫
d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

(2π)4δ4(p1 +p2−p3−p4)×

1

2
|Mgg→gg |2 [fg1fg2(1+fg3)(1+fg4)−fg3fg4(1+fg1)(1+fg2)]−

g2
G

2E1

∫
d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5

d3p6

(2π)32E6

×

(2π)4δ4(p1 +p2 +p3−p4−p5−p6)
1

12
|Mggg→ggg |2 ×

[fg1fg2fg3(1+fg4)(1+fg5)(1+fg6)−fg4fg5fg6(1+fg1)(1+fg2)(1+fg3)] . (1)

In quark matter with equal distributions of up quarks

and down quarks, the 3-to-3 quark elastic scatterings

with the same or different quark flavors contribute to

the up-quark distribution variation by the transport

equation

∂fq1

∂ t
+v1

•∇rfq1 = − gQ

2E1

∫
d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

(2π)4δ4(p1 +p2−p3−p4)×
(

1

2
|Muu→uu |2 + |Mud→ud |2

)

[fq1fq2(1−fq3)(1−fq4)−fq3fq4(1−fq1)(1−fq2)]−

g2
Q

2E1

∫
d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5

d3p6

(2π)32E6

×

(2π)4δ4(p1 +p2 +p3−p4−p5−p6)×
[

1

12
|Muuu→uuu |2 +

1

4
(|Muud→uud |2 + |Mudu→udu |2)+

1

4
|Mudd→udd |2

]

×

[fq1fq2fq3(1−fq4)(1−fq5)(1−fq6)−fq4fq5fq6(1−fq1)(1−fq2)(1−fq3)] (2)

A similar equation is given for the down-quark dis-

tribution. In the equations the degeneracy factors

gG = 16 for gluon and gQ = 6 for up quark and the ve-

locity v1 = 1 for massless gluons and quarks. pi stands

for the four-momenta of the three initial partons with

i = 1,2,3 and of the three final partons with i = 4,5,6.

The distribution functions fgi and fqi depend on the

position r, the momentum pi and the time t. The

squared amplitudes for the 2-to-2 elastic scatterings,

|Mgg→gg |2, |Muu→uu |2 and |Mud→ud |2 can be found

in Refs. [16,17]. The spin- and color-averaged suqared

amplitudes |Mggg→ggg |2, |Muuu→uuu |2, |Muud→uud |2,
|Mudu→udu |2 and |Mddd→ddd |2 are used in the trans-

port equations and the 3-to-3 elastic scatterings re-

late to a larger phase space than the 2-to-2 elastic

scatterings. The transport equations are nonlinear

equations of parton distribution functions.

When the squared four-momenta of gluon and/or

quark propagators approach zero, the divergences of

the squared amplitudes for the 2-to-2 and 3-to-3 elas-

tic scatterings are encountered. They are removed

while the propagators are regularized by a screening

mass which is evaluated from the distribution func-

tion by a formula in Ref. [18]. The anisotropic parton

momentum distributions are formed in the initial Au-

Au collisions. Homogeneous approximation in space

is made for the distributions. Such anisotropy can be

eliminated by elastic scatterings among partons and

thermal equilibrium is established as proved in Ap-

pendix B. Starting from the time tini = 0.2fm/c, when

the anisotropic momentum distributions are formed

and ending at the time tiso when the local momen-

tum isotropy is established, the transport equations

are solved. At tiso the momentum distributions at the

three angles θ = 0◦, 45◦, 90◦ relative to one incoming

gold beam direction overlap and can thus be fitted to
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the Jüttner distribution,

f(p, tiso) =
λ

e|p|/T −λ
(3)

where for gluon matter
[12]

, the temperature T =

0.75GeV, fugacity λ = 0.065 and tiso = 0.65fm/c which

leads to a thermalization time of tiso−tini = 0.45fm/c;

for quark matter
[19]

, T = 0.59GeV, λ = 0.04, tiso =

2fm/c and a corresponding thermalization time of

tiso− tini = 1.8fm/c.

4 Summary

The processes of ggg → ggg and qqq → qqq elas-

tic scatterings are illustrated. The squared ampli-

tude of the process with two four-gluon couplings is

derived. The 3 → 3 parton elastic scatterings con-

tribute to the evolution of the deconfined matter. The

H-theorem proved shows that 2 → 2 and 3→ 3 elas-

tic scatterings drive the deconfined matter described

by the transport equations towards global thermal

equilibrium. A thermalization time shorter (larger)

than 1fm/c is obtained for the gluon (quark) mat-

ter initially created in the central Au-Au collisions

at
√

sNN = 200GeV. If the quark-quark-antiquark

and quark-antiquark-antiquark elastic scatterings are

included
[20]

, the thermalization time of quark matter

given by the transport equation is shortened, but it

is still larger than 1fm/c. Therefore, the elastic scat-

terings between gluons and quarks can be expected

to further shorten the thermalization time.
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Appendix A

In Diagram B∼∼ the colors, four-momenta, space-time indices, helicities and the polarization 4-vectors of the three

initial gluons are labeled as ai, pi, µi, λi and εµi
(λi) with i = 1,2,3 for gluons from left to right, respectively. The colors,

four-momenta, space-time indices, helicities and the polarization 4-vectors of the three final gluons are labeled as bj , p′
j ,

νj , λ′
j and ενj

(λ′
j) with j = 1,2,3 for gluons from left to right, respectively. The virtual gluon has color g, space-time

index λ and four-momentum p. In the appendix the summation implied by a repeated Greek letter runs from 0 to 3
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and the summation implied by a repeated English letter runs from 1 to 8. The amplitude is

B∼∼µ1µ2µ3ν1ν2ν3
εµ1

(λ1)εµ2
(λ2)εµ3

(λ3)ε
∗
ν1

(λ′
1)ε

∗
ν2

(λ′
2)ε

∗
ν3

(λ′
3) = i

g4
s

p2

9
∑

k=1

CkTk , (A1)

with the quark-gluon coupling constant gs and

C1 = f
a1a2e

f
a3ge

f
gb3e′

f
b2b1e′

,

C2 = f
a1a2e

f
a3ge

f
gb2e′

f
b3b1e′

,

C3 = f
a1a2e

f
a3ge

f
gb1e′

f
b2b3e′

,

C4 = f
a1a3e

f
a2ge

f
gb3e′

f
b2b1e′

,

C5 = f
a1a3e

f
a2ge

f
gb2e′

f
b3b1e′

,

C6 = f
a1a3e

f
a2ge

f
gb1e′

f
b2b3e′

,

C7 = f
a1ge

f
a3a2e

f
gb3e′

f
b2b1e′

,

C8 = f
a1ge

f
a3a2e

f
gb2e′

f
b3b1e′

,

C9 = f
a1ge

f
a3a2e

f
gb1e′

f
b2b3e′

,

T1 = (gµ1µ3
gµ2ν2

gν3ν1
−gµ1µ3

gµ2ν1
gν3ν2

−gµ1ν2
gµ2µ3

gν3ν1
+gµ1ν1

gµ2µ3
gν3ν2

)W,

T2 = (gµ1µ3
gµ2ν3

gν2ν1
−gµ1µ3

gµ2ν1
gν3ν2

−gµ1ν3
gµ2µ3

gν2ν1
+gµ1ν1

gµ2µ3
gν3ν2

)W,

T3 = (gµ1µ3
gµ2ν2

gν3ν1
−gµ1µ3

gµ2ν3
gν1ν2

−gµ1ν2
gµ2µ3

gν3ν1
+gµ1ν3

gµ2µ3
gν1ν2

)W,

T4 = (gµ1µ2
gµ3ν2

gν3ν1
−gµ1µ2

gµ3ν1
gν3ν2

−gµ1ν2
gµ2µ3

gν3ν1
+gµ1ν1

gµ2µ3
gν3ν2

)W,

T5 = (gµ1µ2
gµ3ν3

gν2ν1
−gµ1µ2

gµ3ν1
gν3ν2

−gµ1ν3
gµ2µ3

gν2ν1
+gµ1ν1

gµ2µ3
gν3ν2

)W,

T6 = (gµ1µ2
gµ3ν2

gν3ν1
−gµ1µ2

gµ3ν3
gν1ν2

−gµ1ν2
gµ2µ3

gν3ν1
+gµ1ν3

gµ2µ3
gν1ν2

)W,

T7 = (gµ1µ3
gµ2ν2

gν3ν1
−gµ1µ3

gµ2ν1
gν3ν2

−gµ1µ2
gµ3ν2

gν3ν1
+gµ1µ2

gµ3ν1
gν3ν2

)W,

T8 = (gµ1µ3
gµ2ν3

gν2ν1
−gµ1µ3

gµ2ν1
gν3ν2

−gµ1µ2
gµ3ν3

gν2ν1
+gµ1µ2

gµ3ν1
gν3ν2

)W,

T9 = (gµ1µ3
gµ2ν2

gν3ν1
−gµ1µ3

gµ2ν3
gν1ν2

−gµ1µ2
gµ3ν2

gν3ν1
+gµ1µ2

gµ3ν3
gν1ν2

)W,

with W = εµ1
(λ1)εµ2

(λ2)εµ3
(λ3)ε

∗
ν1

(λ′
1)ε

∗
ν2

(λ′
2)ε

∗
ν3

(λ′
3). The squared amplitude is

∑

λ1λ2λ3λ′

1
λ′

2
λ′

3

|B∼∼µ1µ2µ3ν1ν2ν3
εµ1

(λ1)εµ2
(λ2)εµ3

(λ3)ε
∗
ν1

(λ′
1)ε

∗
ν2

(λ′
2)ε

∗
ν3

(λ′
3) |2=

g8
s

p4

9
∑

i=1

9
∑

j=1

FijGij , (A2)

where Fij =CiCj and Gij = TiT
∗
j form symmetric matrices

F =







































648 324 324 324 162 162 324 162 162

324 648 −324 162 324 −162 162 324 −162

324 −324 648 162 −162 324 162 −162 324

324 162 162 648 324 324 −324 −162 −162

162 324 −162 324 648 −324 −162 −324 162

162 −162 324 324 −324 648 −162 162 −324

324 162 162 −324 −162 −162 648 324 324

162 324 −162 −162 −324 162 324 648 −324

162 −162 324 −162 162 −324 324 −324 648
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G =







































144 72 72 72 36 36 72 36 36

72 144 −72 36 72 −36 36 72 −36

72 −72 144 36 −36 72 36 −36 72

72 36 36 144 72 72 −72 −36 −36

36 72 −36 72 144 −72 −36 −72 36

36 −36 72 72 −72 144 −36 36 −72

72 36 36 −72 −36 −36 144 72 72

36 72 −36 −36 −72 36 72 144 −72

36 −36 72 −36 36 −72 72 −72 144







































The elements Fij are obtained with the help of the relationships facdfbcd = 3δab and fabefcdeface′

fbde′

= 36. Finally,

the spin-and color-averaged squared amplitude is

1

8

1

2

1

8

1

2

1

8

1

2

∑

λ1λ2λ3λ′

1
λ′

2
λ′

3

|B∼∼µ1µ2µ3ν1ν2ν3
εµ1

(λ1)εµ2
(λ2)εµ3

(λ3)ε
∗
ν1

(λ′
1)ε

∗
ν2

(λ′
2)ε

∗
ν3

(λ′
3) |2=

59049

128

g8
s

(
√

s)4
, (A3)

where s = p2.

Appendix B

The H-theorem is the result of the conventional Boltzmann equation with 2-to-2 scatterings. We prove that the

3-to-3 scattering term in the transport equation (1) or (2) also allows the establishment of the H-theorem. With

fgi = fg(pi,r, t) where i takes the value from 1 to 6, we define

H(t)=

∫
drdp1fg(p1,r, t) lnfg(p1,r, t) . (B1)

The derivative of H(t) with respect to time is derived by means of the transport equation for gluon matter

∂H(t)

∂ t
=

∫
drdp1

∂fg1

∂ t
(lnfg1 +1)=−

∫
drdp1v1 •(∇rfg1)(lnfg1 +1)−

gG

∫
dr

d3p1

2E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ4(p1 +p2−p3−p4)×

1

2
|Mgg→gg |2 [fg1fg2(1+fg3)(1+fg4)−fg3fg4(1+fg1)(1+fg2)](lnfg1 +1)−

g
2
G

∫
dr

d3p1

2E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5

d3p6

(2π)32E6
×

(2π)4δ4(p1 +p2+p3−p4−p5−p6)
1

12
|Mggg→ggg |2 (lnfg1 +1)×

[fg1fg2fg3(1+fg4)(1+fg5)(1+fg6)−fg4fg5fg6(1+fg1)(1+fg2)(1+fg3)] . (B2)

The second term is separated into four terms in which one term is not changed and the other three terms have the

exchanges p1 ↔ p2, (p1 ↔ p3, p2 ↔ p4) and (p1 ↔ p4, p2 ↔ p3), respectively. The third term is separated into six terms

in which one term is not changed, two terms have individually the exchanges p1 ↔ p2 and p1 ↔ p3, the other three

terms have the exchanges (p1 ↔ p4, p2 ↔ p5, p3 ↔ p6), (p1 ↔ p5, p2 ↔ p4, p3 ↔ p6) and (p1 ↔ p6, p2 ↔ p5, p3 ↔ p4),

respectively. Since all the exchanges do not alter the integration results in the terms, we obtain

∂H(t)

∂t
= −

∫
drdp1v1 •∇r(fg1 lnfg1)−

gG

4

∫
dr

d3p1

2E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ4(p1 +p2−p3−p4)×

1

2
|Mgg→gg |2 [fg1fg2(1+fg3)(1+fg4)−fg3fg4(1+fg1)(1+fg2)] ln

fg1fg2

fg3fg4
−

g2
G

6

∫
dr

d3p1

2E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5

d3p6

(2π)32E6
×

(2π)4δ4(p1 +p2 +p3−p4−p5−p6)
1

12
|Mggg→ggg |2 ×

[fg1fg2fg3(1+fg4)(1+fg5)(1+fg6)−fg4fg5fg6(1+fg1)(1+fg2)(1+fg3)] ln
fg1fg2fg3

fg4fg5fg6
. (B3)
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Since the distribution function is zero at r→∞, the first term equals zero. In practical calculations the approximation

1+fi ≈ 1 is taken. Then due to (x−y) ln
x

y
> 0,

∂H(t)

∂t
6 0. (B4)

H(t) always decreases with time increasing until it is independent of time. When H(t) does not rely on time,
∂H(t)

∂t
= 0

and the distribution function is independent of time. To ensure
∂H(t)

∂ t
=0,

fg1fg2−fg3fg4 =0, (B5)

lnfg1 +lnfg2 =lnfg3 +lnfg4, (B6)

for the 2→ 2 elastic scatterings and

fg1fg2fg3−fg4fg5fg6 =0, (B7)

lnfg1 +lnfg2 +lnfg3 =lnfg4 +lnfg5 +lnfg6, (B8)

for the 3 → 3 elastic scatterings. The conserved quantity lnfg in elastic scatterings must relate to other conserved

quantities like energy and momentum. Then

lnfg =a+b ·p+cE (B9)

where a and c are constants and b is a constant vector. We obtain the distribution function

fg = ea+b •p+cE
, (B10)

which is a thermal distribution. We conclude that the gluon matter described by the transport Eq. (1) must evolve into

a thermal state. For quark matter with equal up and down quark distribution functions, the above proof applies to the

transport Eq. (2) to draw the same conclusion.
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