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Abstract We present a theory to describe multiple scattering (MS) with an arbitrary basis. This framework

allows us to select a set of new basis that exhibits better convergent properties than the usual spherical wave

basis. Therefore, it enables us to perform faster and less memory-consuming calculations. Although the method

outlined here is quite general, it gives a better description of the scattering properties and consequently reduces

the size of the two block matrices involved in the MS calculation.
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1 Introduction

In the last thirty years, multiple scattering (MS)

theory has achieved a great success in understanding

the physical structure and the chemical surrounding

of systems in many scientific fields
[1]

. The base of

the theory relies on the precise description of differ-

ent scattering processes in which the electron (or any

other particle) penetrates and propagates into a ma-

terial composed by numerous atoms. Many proper-

ties of the investigated system can be modeled by

this theory, for instance the electronic structure, and

many standard spectroscopies which can be used to

extract the information from the materials can easily

be described by the MS theory
[2]

.

The whole MS theory can be formulated in terms

of the scattering path operator
[3]

τ ji

LjLi
which de-

scribes all the possibilities of the wave function start-

ing from the i-th atom with angular momentum

Li ≡ (li,mi) and ending at the j-th atom with an-

gular momentum Lj . Technically speaking, the scat-

tering path operator τ ji

Lj Li
, which connects i-th and

j-th atoms, can be written in the form of

τ ji

LjLi
= [(T−1+G)−1]ji

Lj Li
, (1)

where T is the transition matrix, e.g. the T -matrix,

satisfying [T ]ji

LjLi
= −2

k

π

tljδjiδLjLi
, δlj

denotes the

phase shift of the j-th atom scattered by the poten-

tial, the scattering amplitude tlj is given by tlj = sin

δlj
exp(iδlj

), and Gji

LjLi
represents the matrix element

of the propagator (usually the free electron propa-

gator) between the i-th and j-th atoms. Eq. (1) is

very important in distinguishing the chemical infor-

mation from the structural information, the former

is held in the T -matrix while the latter is exclusively

contained in G. In other words, if one changes the

chemical species in the system, only the diagonal ma-

trix T will be affected while the purely off-diagonal

matrix G is left unchanged. On the contrary, with

atom moving, G will change, but not T . There are

two ways to compute the scattering path operator

Received 17 October 2006, Revised 12 December 2006

* Supported by the Outstanding Youth Fund(10125523), the Key Important Nano-Research Project (90206032) of the National

Natural Science Foundation of China and the Knowledge Innovation Program of the Chinese Academy of Science (KJCX2-SW-N11)

1) E-mail: zhaohf@ihep.ac.cn, haifeng.zhao@univ-rennes1.fr

2) Communicator,E-mail: wuzy@ihep.ac.cn

3) E-mail: didier.sebilleau@univ-rennes1.fr

452 — 457



1 5 Ï ë°¸�µ2ÂÄ�õÑ�nØ 453

τ ji

Lj Li
. The first method is to build the MS matrix

[T−1 +G] and then to take its inverse numerically.

This method is called full MS method. In the sec-

ond method, the inverse (I+TG)−1 in Eq. (1) is ex-

panded as (I+TG)−1 = I+(−1)TG+(−1)2TGTG+· · ·

and then is truncated at a desired scattering order.

This method is usually referred as MS series expan-

sion method, and its accuracy depends on the trun-

cated scattering order. The advantages and draw-

backs of these two methods are clear. In the full MS

method, the whole scattering matrix has to be built

before taking the inverse, then the size of the ma-

trix (limited by the computer memory available) is

the ultimate limit of the method. In the series ex-

pansion method, on the contrary, there is no memory

limit, but all the photoelectron paths should expli-

citly be included. Thus the number of the paths and

the number of angular momentum values grow fast

and the CPU time needed becomes the computing

time limit of the approach. We give an example to

show the difference of the two methods. In the case

of using standard spherical wave basis, the wave func-

tions of the atoms can be expanded with respect to

the angular momentum. The expansion can be trun-

cated to a value lmax, which can be approximately

determined by
√

lmax(lmax +1)∼ krm, where k is the

wave number of the electron propagating in the sys-

tem and rm is the radius of the potential sphere of

the corresponding atom. As a consequence, the num-

ber of possible angular momenta for the expansion

around each atom is (lmax + 1)2 so that the size of

the MS matrix in Eq. (1) is Nat × (lmax +1)2, where

Nat is the number of atoms in the system. Because

lmax is proportional to k roughly, the dimension of

the matrix exquisitely increases with energy. For in-

stance in the case of kinetic energy ~
2k2/2m∼ 35eV,

lmax is about 4(actually it also depends on the size of

the atoms through rm) and the number of basis func-

tions needed for each atom is about 25. In this case,

the full MS calculation is feasible. On the contrary,

for a kinetic energy about 1keV, the number of ba-

sis functions required to achieve convergence around

each atomic site is about 400. The full MS computa-

tion in this case is impossible and one has to use the

series expansion method. In general, the limit of the

first method is at the kinetic energy around 100eV

and the number of atoms around 100. Based on this

limitation and the fast computer available, one can

use the full MS method, otherwise, one has to em-

ploy the series expansion approach.

By analyzing these two methods, we find another

more efficient MS formulation. In this new method,

we expect that a better convergent property for va-

rious expansions, which are used to increase the fea-

sibility domain of the full MS method and to reduce

the computational time in the MS series expansion

method, can be reached. Now, we introduce a gen-

eral framework in which one can exam whether such

a goal can be achieved by using other basis functions

instead of standard basis function, such as the sphe-

rical wave function or plane wave function.

Although we are presently concentrated on the

medium/high energy region where the problem is very

serious (as dressed above), searching for better basis

is also beneficial to the low energy study. Indeed, in

the low energy region, spherical wave function pro-

vides a reasonable description of the scattering pro-

cess because lmax is quite small, however the num-

ber of the matrix elements of the propagator, which

is important in the MS calculation, is quite large.

Therefore, any treatment for reducing this number is

welcome.

Finally, to improve the method we can either im-

prove the scattering description so that the number

of the elements in the T -matrix can be reduced or re-

duce the number of terms in the propagator matrix.

In this manuscript, we will focus on the first method

and will discuss the second method in the forthcom-

ing article. It should be mentioned that for a N×N

block MS matrix, the number of diagonal blocks of

the T -matrix is N , while the number of off-diagonal

blocks of the G-matrix is N(N −1). Therefore, with

the screened KKR method
[4]

the second method can

tremendously be improved by reducing the size of the

G-matrix so that the number of atoms used in the full

MS method can be increased from 100 to more than

1000
[5]

.

In section 2, in contrary to the normal MS for-
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mulism, which is based on the spherical wave basis

only, we derive a more generalized formula of the

MS theory with an arbitrary basis. In section 3, we

present a method for computing matrix elements in

the MS theory with a selected basis and discuss how

to improve the computation of the scattering process.

Finally, summary and conclusion are provided in sec-

tion 4.

2 MS theory with an arbitrary basis

In the textbook, the hamiltonian of the system

can formally be written as

H =H0 +V , (2)

where H0 is the hamiltonian of the free electron and

V is the potential. The solution of H0 is generally

written as |φ0〉. In the angular momentum repre-

sentation, |φ0〉 is well-known spherical wave function.

Using propagator G

G(z) = (z−H)−1, (3)

the so-called Dyson equation can be expressed as

G=G0 +G0V G=G0 +GV G0, (4)

or

G=G0 +G0TG0 (5)

with transition operator T . Apparently, the Eq. (3)

for propagator G is not valid if the interested val-

ues of z are those in the continuous spectrum of H .

We then have to extend Eq. (3) by approaching to

the positive real value of z from either its positive

side or its negative side in the complex energy plane.

This leads to two G’s. One of them is G+, describing

the normal propagation of the particle and the other

is G−, representing the time reversal propagation of

the particle.

The second fundamental equation of scattering

theory is the Lippmann-Schwinger equation

|ψ〉= |φ0〉+G0T |φ0〉. (6)

It should be mentioned that the scattering theory

found in textbooks is based on the assumption that

the potential V in Eq. (2) is relatively short-ranged.

For a more generalized framework, we will also in-

clude a relatively long-ranged potential. Therefore,

expression (2) should be replaced by
[6]

H =HV ∞ +V, (7)

where HV ∞ is the asymptotical hamiltonian, i.e. the

hamiltonian of H at infinity. The eigenstates of

the asymptotic hamiltonian were given by Taylor

in Ref. [7]. Now, both the Dyson and Lippmann-

Schwinger equations should be valid in the more gen-

eralized case.

In the case of spherically symmetric potential V ,

we decompose the Schrödinger equation into a radial

part and an angular part. The solution of the latter

one is given by spherical harmonics. So the general

solution of H can always be written as

ψ(r) =
∑

L
aLRl(r)YL(

a

r), (8)

where the subscript L ≡ (l,m) stands for the angu-

lar momentum. Therefore, an appropriate basis to be

chosen is in the form of

φL(r) =φl(r)YL(
a

r), (9)

with a normalization constant being included in the

radial part.

Let us start from a new expression

H = H̄+∆V, (10)

where H̄ is defined as H0 + V̄ with V̄ being a model

potential, H0 stands for the asymptotic hamiltonian,

and the remaining potential is ∆V = V − V̄ . Ap-

parently, Eq. (2) corresponds to the case of V̄ = 0.

Another useful step is taking a solvable potential V̄ ,

in other word, H̄ can analytically be solved, so that

we can take the eigenstates of H̄ as the basis to ex-

pand the solution of H . In addition to the solvable

Coulomb and harmonic oscillator potentials, the re-

cently developed super-symmetric quantum mechan-

ics (SUSY-QM)
[8]

provides a variety of solvable po-

tentials. If |φ̄〉 is the solution of H̄ , the Lippmann-

Schwinger equation associated to Eq. (10) can be

written as

|ψ〉= |φ̄〉+ḠT∆V |φ̄〉, (11)

where the T∆V operator is related to the potential

∆V by

T∆V = ∆V +∆V G∆V, (12)



1 5 Ï ë°¸�µ2ÂÄ�õÑ�nØ 455

with G being the full propagator correlated to H and

Ḡ being the propagator associated with H̄ .

Let us take an arbitrary basis in the partial wave

form (because we are considering a spherically sym-

metric potential)

fL(r) =CLfl(r)YL(
a

r). (13)

We can use such a basis to expand the general solu-

tion of H̄ (in fact, if V̄ is a solvable potential, then

the basis {|fL〉} can be chosen as the eigenstates of

H̄) as

|φ̄〉=
∑

L
ĀL|fL〉. (14)

According to the generalized Lippmann-Schwinger

equation, the solution of H can be written as

|ψ〉=
∑

L
ĀL[|fL〉+ḠT∆V |fL〉], (15)

and the matrix of the transition operator T∆V on

{|fL〉} is a diagonal matrix (If {|fL〉} are the eigenso-

lutions of H̄ , the matrix is definitely diagonal, it can

be proved from the definition of transition operator

(12) as we consider only the case of spherical sym-

metric potential, for the other basis, the orthogona-

lity of spherical harmonics will also give the diagonal

T -matrix)

〈fL′ |T∆V |fL〉=T∆V fL
δLL′ . (16)

Then the solution can be expressed as

|ψ〉=
∑

L
ĀL[|fL〉+Ḡ|fL〉T∆V fL

]. (17)

This means that each partial wave in the total wave

function is composed by an incoming wave, i.e. the

basis function |fL〉, and an outgoing scattered wave

Ḡ|fL〉T∆V fL
. The Eq. (17) also tells us the relative

weights between the incoming and outgoing waves.

In fact, if (V − V̄ ) goes to zero, |ψ〉 approaches to

|φ̄〉 and the second term of the Lippmann-Schwinger

Eq. (17) vanishes. This is just what we expected be-

cause in this case all the scattering effects have al-

ready been included in the basis function. Now, we

can directly improve the convergency of the calcu-

lation by approaching V̄ (when is possible) to V as

close as possible.

3 Matrix elements of operators

The MS theory outlined in the introduction shows

that the T operator and two propagators G+ and

G− are sufficient to describe all the MS character-

istics and to compute required quantities. In terms

of Eq. (1), we can construct the matrix of the scatter-

ing path operator. With this matrix, we can calculate

the cross-sections of various processes, the electronic

and the magnetic properties of the investigated sys-

tem and, in particular, derive the matrix elements of

these operators in an arbitrary basis.

To simplify the notation of Eq. (17), we introduce

a quantity |uL〉 = Ḡ|fL〉. |uL〉 plays the same role of

the Hankel function in the spherical-wave-based MS

theory. With this notation, we can rewrite Eq. (17)

as

|ψ〉=
∑

L
ĀL[|fL〉+ |uL〉T∆V fL

]. (18)

The second term in ψ(r) describes the wave func-

tion beyond the effective range of the potential V (r)

which is short-ranged in comparison with the long-

ranged potential V̄ (r) in the MS theory. Inside the

potential sphere of V (r), we can numerically solve

the Schrödinger equation as usual. Assuming that

the solution can also be written as

ψ(r) =
∑

L̄
K̄L̄Rl̄(r)YL̄(

a

r), (19)

K̄L̄ is the coefficient of partial wave of order L̄. We

can match the Eqs. (18) and (19) and their first

derivatives, respectively, at the surface of the poten-

tial sphere r = ra to ensure the continuity of both

ψ(r) and ψ′(r) across the potential sphere. Multiply-

ing Y ∗

L′(r
a

) to two conditions and integrating over r
a

,

we obtain continuity equations for each partial wave

KLRl(r)r=ra
= Āl[fl(r)r=ra

+ul(r)r=ra
T∆V fL

],

KLR
′

l(r)r=ra
= Āl[f

′

l (r)r=ra
+u′

l(r)r=ra
T∆V fL

].
(20)

Apparently, this equation can easily be solved. In

terms of the definition of Wronskian

W [a,b] = a(r)
db(r)

dr
−b(r)

da(r)

dr
, (21)

we finally obtain

T∆V fL
=−

W [fl,Rl]r=ra

W [ul,Rl]r=ra

. (22)
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It is easy to show that if we take the spherical wave

basis and V̄ = 0, the Eq. (22) can be reduced to the

well-known expression

T∆V fL
= i

W [jl,Rl]r=ra

W [h(1)
l ,Rl]r=ra

. (23)

Generally, computing the matrix elements of Ḡji

Lj Li

is rather complicated, because Ḡji

LjLi
contains not

only the propagator Ḡ but also the translation op-

erator T , both of which are the functions of the co-

ordinate vector between the atom i and the atom j

and the corresponding quantum numbers of angular

momenta. However, from the structure of Ḡji

Lj Li
=

〈fLj
, j|Ḡ|fLi

, i〉, it is clear that uL(r) = 〈r|Ḡ|fL〉 is

the key for the computation of the matrix element.

With the obtained T -matrix elements in Eq. (22), the

matrix element Ḡji

Lj Li
can be calculated. Now, we re-

strict ourselves to a set of basis, with which uL(r) can

easily be computed. Up to now, we have not selected

any basis {|fL〉} that will be used to expand the eigen-

function |φ̄〉 of H̄ . Assume that |fL〉 is an eigenfunc-

tion of H̄ . In this case, because Ḡ and H̄ commute

to each other, it is easy to check that |uL〉 = Ḡ|fL〉

is another eigenfunction of H̄ with the same eigen-

value. Although we will not prove it here, we claim

that |fL〉 and |uL〉 are linearly independent. This ar-

gument can be found in many textbooks for the case

of Ḡ=G0 and can easily be proved if V̄ is a Coulomb

potential. Moreover, |fL〉 and |uL〉 should have dif-

ferent asymptotic behaviors at infinity because of the

operation of Ḡ (a detailed proof will be shown in our

forthcoming publication).

Using |uL〉, we can easily obtain a separable ex-

pression of Ḡ in the following

Ḡ=
∑

L
|uL〉〈fL| , (24)

and the corresponding Green function Ḡ(r′,r) =

〈r′|Ḡ|r〉 in the form of

Ḡ(r′,r) =
∑

L
uL(rM )fCC

L (rm), (25)

where “CC” stands for complex conjugate and

rm(rM) is the smaller coordinate (larger coordinate)

between r and r
′. Similar to the free electron case,

where we choose fL(r) to be the regular function at

the origin while uL(r) to be the irregular one, this dis-

tinction is made just for the convergent purpose. In

the case of V̄ = 0, with spherical wave basis, uL(r) can

be written as −i

√

π

2
ilh(1)

l (kr)YL(r
a

) if the normalized

basis function is defined as k

√

2

π

iljl(kr)YL(r
a

)
[9]

. Us-

ing the same contour integration method described

in Ref. [9], we can derive the expression of uL(r).

Usually, if we know the regular solution fL(r) of the

Schrödinger equation with potential V̄ , it is easy to

derive corresponding irregular solution gL(r). In the

Coulomb potential case, the irregular solution has al-

ready been given in many textbooks, for instance.

Ref. [10]. Assuming that gL(r), as the irregular solu-

tion, approaches to ilnl(r)YL(r
a

) when V̄ goes to zero,

we can construct two linearly independent solutions

u(1)
L (r) = fL(r)+igL(r),

u(2)
L (r) = fL(r)− igL(r).

(26)

By performing contour integration and expanding

〈r|Ḡ|fL〉 in terms of the basis function adopted from

the eigenfunction of H̄ , the propagator matrix ele-

ment Ḡji

Lj Li
can be calculated by the auxiliary basis

function u(1)
L (r)

〈r|Ḡ|fL〉=−i

√

π

2
ilu(1)

l (kr)YL(
a

r). (27)

Up to now, all the multiple scattering matrices can

be calculated by using the {|fL〉} basis.

4 Discussion and conclusion

We presented here a more generalized framework

for the MS calculation. This framework is based

on the scattering theory valid for an arbitrary ba-

sis, which can be reduced to the spherical wave

based standard MS theory. The proposed treatment

improves the scattering description by transferring

short-ranged scattering effects into the basis func-

tions.

The basis function constructed by using the in-

troduced method may make the convergence of the

expansion of the scattered wave function faster. The

MS matrix defined in Eq. (1) allows us to use a smaller

set of T -matrix blocks than that in the case of using

spherical wave basis in the computation. It should



1 5 Ï ë°¸�µ2ÂÄ�õÑ�nØ 457

be mentioned that the T -matrix in this framework is

slightly different with that in the spherical wave basis

case, because the former one is related to the poten-

tial V̄ , while the latter one is associated with the true

potential V . In this paper, we have not considered the

behavior of the basis functions with respect to the

propagator matrix. A more accurate description of

the basis function that would substantially decrease

the size of the propagator matrix exceeds the scope

of the present contribution and will be discussed in

the forthcoming publication.
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