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Abstract We investigate coefficients in the Israel-Stewart’s causal hydrodynamics and discuss the way to

calculate them microscopic theory. Based on the hadro-molecular simulation based on an event generator

URASiMA, we evaluate the coefficients for a hot and dense hadronic fluid.
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1 Introduction

A hydrodynamical model is one of the most es-

tablished models for the multiple-production in high

energy reactions. Especially for RHIC, a hydrody-

namical model is believed to be the most promising

model for the v2. Up to now, most hydrodynamical

models for RHIC adopt a perfect fluid model, i.e.,

Euler equation neglecting viscosity and heat conduc-

tivity for simplicity.

It is well know that the relativistic extension of

the Navier-Stokes equation which contains transport

coefficients is not unique. At least three types of

deferent definition for the local four velocity Uµ are

known. In the textbook by Landau and Lifshitz, Uµ

is defined as an eigenvector of the energy-momentum

tensor
[1]

, and it is named e-frame. A mass current Jµ

is used to define Uµ by Eckart and Namiki-Iso
[2]

(this

is named m-frame). Weinberg used a charged current

instead of a mass current
[3]

. All these three types are

the covariant extension of the non-relativistic Navier-

Stokes equation which belongs to the diffusion type

parabolic equation. The rank of the spatial derivative

and the one of time derivative are different. This dif-

ference between space and time contradicts relativity

and can lead acausal results.

Israel and Stewart proposed a relativistic causal

hydrodynamic equation
[4]

which is hyperbolic type

and contains several additional coefficients other than

ordinary transport coefficients. In this paper we will

investigate the physical meaning of these new coeffi-

cients and evaluate them of a hadronic gas based on

a microscopic theory.

2 Causal hydrodynamics

The relativistic hydrodynamical equation pro-

posed by Israel and Stewart is as follows:

qµ = −κ∆µν

(

1

T
∂ν T +Duν + β̄1Dqν−

ᾱ0∂ν σ− ᾱ1 ∂α σα
ν

)

,

σ = −
1

3
ηV(∂µ uµ +β0Dσ− ᾱ0 ∂µ qµ),

σµν = −2η〈∂µ uν +β2Dσµν− ᾱ1 ∂µ qν〉,

where D ≡ uµ ∂µ
and 〈Aµν〉 ≡

1

2
∆λ

µ∆ρ
ν(Aλρ + Aρλ −

2

3
∆λρ∆

αβAαβ).

The most important feature of Israel-Stewart’s hy-

drodynamics is the existence of the relaxation terms

βi, which makes the equation hyperbola. As the same

order term, there also appear terms with αi which

stand for the influence of the derivative of the differ-

ent currents.
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3 Linear responce theory

A hydrodynamical model is a macroscopic phe-

nomenological model of which coefficients should be

derived by a microscopic statistical physics. Accord-

ing to the linear response theory, transport coeffi-

cients are evaluated from the correlations of the cor-

responding currents. Thermo-dynamical forces and

currents are identified through the formula of entropy

production.

Israel and Stewart gives entropy production as
[4]

,

∂µ Sµ =
1

T
qµ

{

−∆µν

(

1

T
∂ν T +Duν + β̄1Dqν−

ᾱ0 ∂ν σ− ᾱ1 ∂α σα
ν

)}

+

1

T
σ (−(∂µ uµ +β0Dσ− ᾱ0 ∂µ qµ))+

1

T
σµν

(

−〈∂µ uν + β̄2Dσµν− ᾱ1 ∂µ qν〉
)

=

qµqµ

κT
+

3

ηV

σ2

T
+

σµνσµν

2ηT
.

This formula is diagonal with currents and there ex-

ists no combination which contradicts with Currie’s

theorem. Therefore, even there exist α term, terms

added by Israel and Stewart are able to be rewrite

in the higher derivative of thermo-dynamical quanti-

ties. Under the basic assumption of linear response

theory that the disturbance of macroscopic current is

small, we can safely adopt usual Kubofs formula for

the transport coefficients, such as viscosity and heat

conductivity
[6]

.

4 Evaluation of β

As we have discussed in the previous section,

we can calculate viscosity and heat conductivity by

taking current-current correlation as usual. If we

use Israel-Stewart’s causal hydrodynamics as a phe-

nomenological model, we need additional coefficients

α and β also. Neglecting α for simplicity, let us focus

our discussion on β through out this paper.

If the β belongs to a kind of material constant, it

should only depend on the thermo-dynamical quan-

tities such as temperature and density. It should not

depend on the boundary condition of the macroscopic

current. Hence, we may assume particular situation

without generality.

Suppose the situation that the temperature gra-

dient only exists. Then thermal current qi in Eq. (1)

is given as,

qi =−κβ̄1

d

dt
qi .

If the heat current relaxes in τκ as,

qi(t) = qi(0)e−
t

τκ . (1)

Then, β̄1 are related to the heat conductivity as,

κβ̄1 = τκ.

According to the linear response theory, heat con-

ductivity is calculated through the correlation of the

heat currents,

κ =
1

T

∫
d3x′

∫ t

−∞

dt′e−ε(t−t′)(qx(x, t), qx(x′, t′)). (2)

Therefore, if the heat current relaxes in the relaxation

time τκ, heat conductivity is written as,

κ =
τκ

T
〈〈qi(t)qi(t)〉〉,

where 〈〈∗∗〉〉 is average and integraion in Eq. (5).

Hence, transport coefficient and corresponding β

are closely related through the expectation value of

the square of current, relaxation time and tempera-

ture.

5 Relaxation of hadron gas

In a previous paper we have reported the calcula-

tion of transport coefficients of hadron gas based on

a hadro-molecular simulation
[6]

. We used event gen-

erator URASiMA as a time evolution generator. In

our simulation, we first put only baryons in the box

with periodic boundary condition and turn switch on

the simulator. Collisions between particles take place

and mesons and resonances are produced. At later

time, the system approaches to some kind of station-

ary state where all kinds of particle possess a common

slope parameter, which we may call “temperature”[7].

The configurations of the stationary state we use as

statistical ensembles.

Figure 1 displays correlation of stress-shear ten-

sors as a function of time interval of the currents,

which correspond to (Txy(x, t),Txy(x
′, t′)) in the for-

mula of the linear response theory. Figs. 2 and 3

display the shear viscosity and heat conductivity of

hadron gas obtained by our simulation. According to

our simulation, both transport coefficients depend on
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baryon number density very weakly and temperature

dependences are as strong as almost T 5[6]
.

Fig. 1. Relaxation in visous-shear tensor correlation.

Fig. 2. Shear visosity.

Fig. 3. Heat concuctivity.

On the other hand, the changes of the relaxation

times of the currents are very mild as functions of

temperature (Figs. 4 and 5). Most part of their

temperature dependences come from its change of

the intensity (expectation value of the current square

(Figs. 6 and 7)). In Figs. 4—7 nB0 stands for normal

nuclear baryon number density, nB0=0.157(1/fm3).

Fig. 4. Relaxation of

visous-shear tensor.

Fig. 5. Relaxation of

heat conductivety.

Fig. 6. The square ex-

pectation of heat cur-

rent.

Fig. 7. The square ex-

pectation of visous-

shear tensor.

6 Concluding remarks

In this paper we have investigated the coefficients

of the causal hydrodyanamics and evaluated them by

using a hadro-molecular simulation. According to our

simulation based on URASiMA, the relaxation time

of stress-shear tensor and heat current of the hadron

gas are about 2fm. The changes with temperature

and baryon number density are very small. This re-

sults show rather clear contrast against the relaxation

time in diffusion process which changes clearly with

temperature[8, 9].

The importance of quantitatively investigating

the relaxation in order to justify the macroscopic

model has been pointed out by Iso, Mori and

Namiki
[10]

.

Stimulating discussions at the workshop Thermal-

Field Theory and Its Application held at the Yukawa

Institute for Theoretical Physics was extremely help-

ful.
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