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1 Introduction

Although quantum field theory has succeeded

greatly in the scope of particle physics, people have

met some difficulties when the methods of the quan-

tum field theory are applied to nuclear systems. The

ground state of the nuclear system is filled with inter-

acting nucleons, which is different from the vacuum in

perturbation theory. In addition, The coupling con-

stants of strong interaction between nucleons are far

larger than the fine structure constant in the quantum

electrodynamics, so the perturbation method could

not be performed perfectly on nuclear systems. At

last, the nucleons and mesons consist of quarks and

gluons, and are not fundamental components in the

level of modern knowledge. All these factors deter-

mine that the perturbation method in quantum field

theory can only be generalized to solve nuclear many-

body problems approximately and effectively.

Walecka and his group attempted to solve the

nuclear many-body problems in the framework of

quantum field theory, and developed the method of

relativistic mean-field approximation
[1—3]

. In this

method, the field operators of the scalar meson and

vector meson are replaced with their expectation val-

ues in the nuclear matter, respectively. Therefore, the

calculation is simplified largely. Until now, there have

been some excellent review articles giving a more de-

tailed description on this topic
[3—7]

. In the earliest

relativistic mean-field theory, the resultant compres-

sion modulus is almost 550MeV
[1]

, which is far from

the experimental data range of 200—300MeV. To

solve this problem, the nonlinear self-coupling terms

of scalar mesons are introduced to produce the proper

equation of state of nuclear matter
[8]

. No doubt, ad-

ditional parameters would give more freedoms to fit

the saturation curve of nuclear matter. Zimanyi and

Moszkowki developed the derivative scalar coupling

model yielding a compression modulus of 225MeV

without any additional parameter[9].
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With the bare nucleon-nucleon interaction, the

properties of symmetric nuclear matter at vari-

ous densities can be determined in the relativis-

tic Brueckner-Hartree-Fock calculation. For each

value of the density, the relativistic mean-field

equations are solved and the corresponding cou-

pling constants are fixed to the results of Brueck-

ner calculation. Therefore, a relativistic mean-field

model with density-dependent coupling constants is

obtained
[10, 11]

. Meanwhile, the Debye screening

masses of mesons in the nuclear matter are calculated

in the relativistic mean-field approximation
[12]

, and it

shows all the screening meson masses increase with

the nucleon number density. With the meson masses

replaced by their corresponding screening masses in

Walecka-1 model, the saturation properties of the nu-

clear matter are fitted reasonably, and then a density-

dependent relativistic mean-field model is proposed.

The nonlinear self-coupling terms of the mesons are

not included in both of these density-dependent rela-

tivistic mean-field models. In the nuclear matter, the

screening meson masses increase with the density of

the nuclear matter, and it is equivalent to the state-

ment that the coupling constants decrease with the

density increasing while the masses of mesons retain

constant. At this point, these two models are consis-

tent with each other.

The relativistic mean-field results may be derived

by summing the tadpole diagrams self-consistently

in nuclear matter, retaining only the contributions

from nucleons in the filled Fermi sea in the evalu-

ation of the self-energy and energy density, i.e., the

relativistic mean-field method is consistent to the rel-

ativistic Hartree approximation
[3]

. It is correct only

in the framework of the original Walecka model. In

the most popular Walecka-2 model, in which the non-

linear self-coupling terms of the scalar meson are in-

cluded, whether the relativistic mean-field method is

still consistent to the relativistic Hartree approxima-

tion has not be studied. In Sect. 2, we obtained the

self-energies of hadrons by calculating the second or-

der Ŝ matrix in the nuclear matter, then an effective

method to solve nuclear many-body problems is eval-

uated. In Sect. 3, the effective nucleon mass in the

nuclear matter is discussed with the nonlinear self-

coupling terms of the scalar meson included in the La-

grangian density. In Sect. 4, the density-dependent

relativistic mean-field methods are discussed. The

summary is given in Sect. 5.

2 The self-energies of hadrons in the

nuclear matter

According to Walecka-1 model, the nucleons ψ in-

teract with scalar mesons σ through a Yukawa cou-

pling ψ̄ψσ and with neutral vector mesons ω that

couple to the conserved baryon current ψ̄γµψ. the

Lagrangian density can be written as

L = ψ̄(iγµ ∂µ−MN)ψ+
1

2
∂µσ∂µ

σ− 1

2
m2

σ
σ2−

1

4
ωµνω

µν +
1

2
m2

ω
ωµω

µ−gσψ̄σψ−

gωψ̄γµω
µψ, (1)

with MN, mσ and mω the nucleon, scalar meson

and vector meson masses, respectively, and ωµν =

∂µων −∂ν ωµ the vector meson field tensor.

The momentum-space propagators for the scalar

meson, vector meson and the nucleon take the forms

of
[3]

i∆(p) =
−1

p2−m2
σ
+iε

, (2)

iDµν(p) =
gµν

p2−m2
ω

+iε
, (3)

iGFαβ(p) = (γµp
µ +MN)αβ

( −1

p2−M 2
N +iε

)

. (4)

As the effect of Fermi sea is considered, an on-shell

part

iGDαβ(p) = (γµp
µ +MN)αβ ×

(

− iπ

E(p)
δ(p0−E(p))θ(pF−|p|)

)

, (5)

is included in the nucleon propagator besides the

Feynman propagator in Eq. (4), where E(p) =
√

p2 +MN, and pF is the Fermi momentum of nucle-

ons.

Since the vector meson couples to the conserved

baryon current, the longitudinal part in the propaga-

tor of the vector meson will not contribute to physi-

cal quantities
[13]

. Therefore, only the transverse part

in the propagator of the vector meson is written in

Eq. (3).
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According to the Feynamn diagrams shown in

Figs. 1 and 2, the self-energies of the nucleon, the

scalar and vector meson in the nuclear matter can

be calculated with the Feynman rules in Ref. [3].

It should be noticed that there is a more factor of

(i) in each of the propagators of the hadrons in our

manuscript than those propagators in Ref. [3].

In this section, we will calculate the self-energies

of hadrons in the nuclear matter from Wick’s theorem

of quantum field theory.

Fig. 1. Feynman diagrams for the second order

self-energy of the nucleon in nuclear matter

calculated in the Walecka model. The dou-

ble solid lines denote the nucleon propagators

defined in the ground state of nuclear matter.

Fig. 2. Feynman diagram for the second or-

der self-energies of the scalar or vector meson

in nuclear matter calculated in the Walecka

model. Same case as in Fig. 1.

The momentum-space propagator of the nucleon

takes the form of Feynman propagator
[13]

. Therefore,

the Pauli blocking effect of Fermi sea is excluded in

the propagator of the nucleon, and the on-shell prop-

agator is no use in the following calculations.

The interaction Hamiltonian can be expressed as

HI = gσψ̄σψ+gωψ̄γµω
µψ . (6)

In the second order approximation, only

Ŝ2 =
(−i)2

2!

∫
d4x1

∫
d4x2T [HI(x1)HI(x2)] , (7)

in the S-matrix should be calculated in order to ob-

tain the self-energy corrections of the nucleon and

mesons.

2.1 The nucleon self-energy in nuclear mat-

ter

The second order self-energy of the nucleon cou-

pling to the scalar meson is discussed firstly.

In order to obtain the second order self-energy cor-

rection of the nucleon in Fermi sea, only the normal

ordering product

N

[

ψ̄(x1)σ
︷ ︸︸ ︷

(x1)ψ(x1)ψ̄(x2)σ(x2)ψ(x2)

]

, (8)

in the Wick’s expansion of the time-ordered product

in Eq. (7) should be considered, where the overbrace

“︷︸︸︷” denote the contraction of a pair of field oper-

ators.

When a nucleon with momentum k and spin δ is

considered in the nuclear matter, its field operator

ψ(k,δ,x) and conjugate field operator ψ̄(k,δ,x) can

be expressed as

ψ(k,δ,x) = AkδU(k,δ)exp(−ik •x)+

B†
kδV (k,δ)exp(ik •x) , (9)

and

ψ̄(k,δ,x) = A†

kδŪ(k,δ)exp(ik •x)+

BkδV̄ (k,δ)exp(−ik •x) (10)

respectively. In the calculation of the self-energy of

the nucleon with the momentum k and the spin δ, a

pair of the nucleon field operator and the conjugate

operator in the normal ordering product of Eq. (8)

should be replaced with Eqs. (9) and (10), while the

other pair of the nucleon field operator and the conju-

gate operator connected with the underbrace “ ︸︷︷︸”

in the following normal ordering products denote the

nucleon in the Fermi sea, and would be replaced with

their expansion forms of a complete set of solutions

to the Dirac equation, respectively.

N

[

ψ̄(x1)σ
︷ ︸︸ ︷

(x1)ψ(x1)ψ̄(x2)σ(x2)ψ(x2)

]

→

2σ
︷ ︸︸ ︷

(x1)σ(x2)×
{

N

[

ψ̄(k,δ,x1)ψ(k,δ,x1)ψ̄ (x2)ψ
︸ ︷︷ ︸

(x2)

]

+

N

[

ψ̄(k,δ,x1)ψ (x1)ψ̄
︸ ︷︷ ︸

(x2)ψ(k,δ,x2)

]}

. (11)

Suppose there are no antinucleons in the ground

state of nuclear matter and the Fermi sea is filled with

interacting nucleons, only the positive-energy compo-

nents are considered in the expansion forms of the

nucleon field operator and its conjugation. The ex-

pectation value of Ŝ2 in the nuclear matter on the
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first term in Eq. (11) can be written as

〈G|Ŝ2|G〉 = ig2
σ(2π)4δ4(p1 +k1−p2−k2)×

∑

λ=1,2

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

Ū(k,δ)U(k,δ)i∆(0)Ū (p,λ)U(p,λ),

where k1 = k2 = k, and p1 = p2 = p = (E(p),p), and

θ(x) is the step function.

According to Dyson equation, the nucleon propa-

gator in the nuclear matter can be derived as

i

/k−MN−Σσ

1 +iε
=

i

/k−MN +iε
+

i

/k−MN +iε
×

i
g2

σ

m2
σ

∑

λ=1,2

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

Ū(p,λ)U(p,λ)
i

/k−MN +iε
, (12)

then the second order self-energy of the nucleon in the

nuclear matter from the first term in Eq. (11) can be

written as

Σσ

1 = − g2
σ

m2
σ

∑

λ=1,2

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

Ū(p,λ)U(p,λ) =− g2
σ

m2
σ

ρ
S
, (13)

with

ρ
S
=

∑

λ=1,2

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|), (14)

the scalar density of protons or neutrons.

The second order self-energy of the nucleon rele-

vant to the second term in Eq. (11) can be obtained

similarly

Σσ

2 = g2
σ

∑

λ=1,2

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

[
U(p,λ) i∆(k−p)Ū(p,λ)

]
=

−g2
σ

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

[
/p+MN

2MN

1

(k−p)2−m2
σ

]

. (15)

Correspondingly, the normal ordering products

relevant to the self-energy of the nucleon coupling to

the vector meson in the calculation of the Ŝ2 matrix

can be written as

N

[

ψ̄(x1)γµω
µ
︷ ︸︸ ︷

(x1)ψ(x1)ψ̄(x2)γνω
ν(x2)ψ(x2)

]

→

2ωµ
︷ ︸︸ ︷

(x1)ω
ν(x2)×

{

N

[

ψ̄(k,δ,x1)γµψ(k,δ,x1)ψ̄ (x2)γνψ
︸ ︷︷ ︸

(x2)

]

+

N

[

ψ̄(k,δ,x1)γµψ (x1)ψ̄
︸ ︷︷ ︸

(x2)γνψ(k,δ,x2)

]}

. (16)

Therefore, the second order self-energies of the nu-

cleon coupling to the vector meson in the nuclear

matter corresponding to the first and second terms

in Eq. (16) can be calculated as

Σω

1 = (−igω)2
∑

λ=1,2

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

γµiDµν(0)
[
Ū(p,λ)γνU(p,λ)

]
= γ0

g2
ω

m2
ω

ρ
V
, (17)

with

ρ
V

=
∑

λ=1,2

∫
d3p

(2π)3
θ(pF−|p|), (18)

the number density of protons or neutrons, and

Σω

2 = g2
ω

∑

λ=1,2

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

[
γµU(p,λ)iDµν

0 (k−p)Ū(p,λ)γν

]
=

g2
ω

∫
d3p

(2π)3
1

(p2 +M 2
N)

1

2

−γµp
µ +2MN

(k−p)2−m2
ω

. (19)

Obviously, the second order self-energies of the

nucleon Σσ

1 , Σσ

2 , Σω

1 , Σω

2 calculated from Wick’s ex-

pansion in this section are the same as those results

from Walecka model, respectively
[3]

.

2.2 The self-energies of the scalar and vector

mesons

In the Wick expansion of the time-ordered prod-

uct in Eq. (7), only the normal ordering products in-

cluding one contraction of a pair of nucleon field op-

erator and its conjugate operator should be studied

in order to obtain the second order self-energy of the

scalar meson in the filled Fermi sea.

When a scalar meson with determined momentum

k is studied in the nuclear matter, its field operator

σ(k,x) can be expressed as

σ(k,x) = ak exp(−ik •x)+a†k exp(ik •x). (20)
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In order to calculate the self-energy of the scalar

meson in the nuclear matter, the scalar field opera-

tors σ(x1) and σ(x2) in the following normal ordering

product should be replaced with Eq. (20),

N

[

ψ̄
︷ ︸︸ ︷

(x1)σ(x1)ψ(x1)ψ̄(x2)σ(x2)ψ(x2)

]

+

N

[

ψ̄(x1)σ(x1)ψ
︷ ︸︸ ︷

(x1)ψ̄(x2)σ(x2)ψ(x2)

]

→

2ψ
︷ ︸︸ ︷

(x1)ψ̄(x2)N

[

ψ̄ (x1)σ(k,x1)σ(k,x2)ψ
︸ ︷︷ ︸

(x2)

]

. (21)

The nucleon field operator ψ(x2) and the conjugate

field operator ψ̄(x1) in the normal ordering product

of Eq. (21) should be expanded in terms of the set of

solutions to the Dirac equation, respectively. There-

fore, the second order self-energy of the scalar meson

can be obtained as
[12]

Σσ = (−igσ)2
∑

λ=1,2

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

[
Ū(p,λ)(iG(p−k)+iG(p+k))U(p,λ)

]
=

g2
σ

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

[

Tr

(
1

/p−/k−MN

/p+MN

2MN

)

+

Tr

(
/p+MN

2MN

1

/p+/k−MN

)]

. (22)

Similarly, the normal ordering products relevant

to the self-energy of the vector meson in the nuclear

matter can be written as

N

[

ψ̄
︷ ︸︸ ︷

(x1)γµω
µ(x1)ψ(x1)ψ̄(x2)γνω

ν(x2)ψ(x2)

]

+

N

[

ψ̄(x1)γµω
µ(x1)ψ

︷ ︸︸ ︷

(x1)ψ̄(x2)γνω
ν(x2)ψ(x2)

]

→

2ψ
︷ ︸︸ ︷

(x1)ψ̄(x2)×

N

[

ψ̄ (x1)γµω
µ(k,δ,x1)γνω

ν(k,δ,x2)ψ
︸ ︷︷ ︸

(x2)

]

, (23)

with

ωµ(k,δ,x) = bkδεµ(k,δ)exp(−ik •x)+

b†kδεµ(k,δ)exp(ik •x). (24)

The self-energy of the vector meson in the nuclear

matter can be calculated similarly as

Σω = (−igω)2
∑

λ=1,2

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

[
Ū(p,λ)

(
γν iG(p−k)γµ +

γµiG(p+k)γν

)
U(p,λ)

]
=

g2
ω

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)×

[

Tr

(

γν

1

/p−/k−MN

γµ

/p+MN

2MN

)

+

Tr

(

γν

/p+MN

2MN

γµ

1

/p+/k−MN

)]

. (25)

It is no doubt that the second order self-energies

of the scalar and vector mesons calculated from Ŝ2

matrix directly are the same as those from Walecka

model, respectively
[3]

.

The second-order self-energies of the nucleon, the

scalar and vector meson in the nuclear matter are

calculated from Wick’s expansion. It shows the same

results as those in Walecka model
[3]

, and then an ef-

fective many-body method based on vacuum propa-

gators has been evaluated. Feynman rules on this ef-

fective method can be summarized similarly as those

in Walecka model
[3]

. In the new Feynman rules, a

factor of

∑

λ=1,2

∫
d3p

(2π)3
MN

E(p)
θ(pF−|p|)

is included for each pair of crosses, which denote the

initial and final states of the nucleon in the Fermi sea.

Moreover, the momentums and spins of external lines

with a cross or without a cross take the same values

with each other, respectively. In addition, a factor of

(−1) is included in the calculation of exchange dia-

grams.

The loop diagrams, which relate to the contribu-

tion of Dirac sea and cause divergences, are not neces-

sary to be considered in no Dirac sea approximation.

Therefore, only the diagrams with crosses should be

studied in the calculation of self-energies of particles.

Because there do not exist antinucleons in the ground

state of nuclear matter, the diagrams with an external

line of antinucleons should be excluded, too.

The Feynman diagrams for the second order self-

energy of the nucleon in the nuclear matter in Sec-
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tion 2.1 are shown in Fig. 3. The first diagram in

Fig. 3 corresponds to the tadpole contribution, and

the second corresponds to the exchange term in the

relativistic Hartree-Fock approximation
[3]

.

Fig. 3. Feynman diagrams for the second or-

der self-energy of the nucleon in nuclear mat-

ter calculated from Ŝ2 matrix elements. The

wave lines denote the scalar meson or vector

meson, while 1 and 2 denote particles of the

initial state, 3 and 4 denote particles of the

final state.

The self-energies of the scalar meson, vector me-

son or the photon in the nuclear matter can be cal-

culated with the Feynman diagrams in Fig. 4. It

shows the same results as the one-fermion-loop ap-

proximation in Walecka model
[3]

, i.e., the same effec-

tive masses of the photon and mesons in Refs. [12, 14]

can be obtained in the one-fermion-loop approxima-

tion in Walecka model.

Fig. 4. Feynman diagrams for the second or-

der self-energies of the scalar or vector meson

in nuclear matter calculated from Ŝ2 matrix

elements. Same case as in Fig. 3.

In our formalism, the effects of the nuclear

medium come from the nucleon condensation, i.e.,

the scalar density of nucleons. In Walecka’s formal-

ism, the propagators of hadrons are defined in the

ground state of the nuclear matter, which are dif-

ferent from the propagators defined in vacuum, and

the loop diagrams are considered although the mean-

ings are different from those in quantum field theory.

Therefore, Feynman rules in our formalism are differ-

ent from those in Refs. [3, 15], and The condensation

of the nucleon is embodied in the integrals of three-

momentum space in the new Feynman rules.

In particle physics, people are mostly interested in

scattering processes, for which the Ŝ matrix provid-

ing the probability of transition from the initial states

to final states, is the most suitable framework. In

statistical physics, however, we are mainly concerned

the expectation value of physical quantities at finite

time. Obviously, these two problems are connected

with each other in our formalism. Because vacuum

propagators are adopted in our formalism, which are

not relevant to the state of the system, it is not dif-

ficult to extend this formalism to study the proper-

ties of non-equilibrium and finite temperature states.

Some works have been done along this direction
[16]

.

Actually, the propagator including the on-shell

part of Eq. (5) is not for the nucleon, but for a kind of

quasi-nucleon, whose creation and annihilation oper-

ators satisfy the same anti-commutation relations as

those of the nucleon. There is a Bogoliubov transfor-

mation between the creation and annihilation opera-

tors of the quasi-nucleon and the nucleon
[17]

.

3 Self-consistent relativistic Hartree

approximation

When the isospin SU(2) symmetry is considered

in the nuclear matter, the ρ meson interaction should

be included in the Lagrangian density,

L
ρ

Int =−gρψ̄γ
µ τ

2
•ρµψ , (26)

with τ being the Pauli matrix. Because the ρ+ and

ρ− mesons only contribute to the second order self-

energy of the nucleon in the exchange terms, only the

ρ0 meson interaction is considered in the relativistic

Hartree approximation.

With the similar method, the second order self-

energy corrections of the proton and neutron coupling

to the ρ0 meson can be written as

Σρ

1 = γ0

g2
ρ

±4m2
ρ

(ρp−ρn) , (27)

with the plus for the proton and the minus for the

neutron, where ρp and ρn are the number density of

protons and neutrons, respectively. Obviously, the

results in Eq. (27) are the same as those in the rela-

tivistic mean-field approximation
[3]

.

In the calculation of the second order self-energies

of hadrons in the nuclear matter in Sect. 2, the non-

interacting hadron propagators are used. Although

the second order results can be summed to all or-
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ders with Dyson equation, this procedure is not self-

consistent. Self-consistency can be achieved by using

the interacting propagators to also determine the self-

energy
[3]

. In the relativistic Hartree approximation,

the self-energy of the nucleon in the nuclear matter

can be calculated self-consistently with the interact-

ing propagator of the nucleon

iGH(p) =
−1

γµp̄µ−M∗
N+iε

, (28)

where

M∗
N =MN−

g2
σ

m2
σ

(ρS
p +ρS

n ), (29)

p̄0 = p0− g2
ω

m2
ω

(ρp +ρn)−
g2

ρ

±4m2
ρ

(ρp−ρn), (30)

with the plus for the proton and the minus for the

neutron, and

p̄= p . (31)

In Eq. (29), ρS
p and ρS

n are the scalar densities of pro-

tons and neutrons, respectively. It corresponds to the

transformation

MN →M∗
N, E(p)→E∗(p) , (32)

in the self-energy of the nucleon in Eqs. (13) and (17),

where E∗(p) = (p2 +M∗
N

2)1/2.

The effective nucleon mass can be defined as the

pole of the nucleon propagator in the limit of the

space-momentum of the nucleon p → 0, which cor-

responds to the mass spectra of the collective ex-

citations in the nuclear matter
[18, 19]

. According to

Eq. (13), the effective nucleon mass in the nuclear

matter is defined in Eq. (29) in the relativistic Hartree

approximation. In Walecka-2 model, the nonlinear

self-coupling terms of the scalar meson are introduced

to replace the mass term
1

2
m2

σ
σ2[8]

,

U(σ) =
1

2
m2

σ
σ2 +

1

3
g2σ

3 +
1

4
g3σ

4 . (33)

Because the boson distribution functions of the

mesons are zero in the nuclear matter at zero tem-

perature, the self-coupling terms of the scalar meson

have no contribution to the self-energy corrections of

the nucleon and the meson when the loop diagrams

are ignored. Therefore, the effective nucleon mass

still takes the form in Eq. (29) in Walecka-2 model,

which is important to conserve the self-consistency in

the calculation of relativistic Hartree approximation.

In the relativistic mean-field approximation of

Walecka-2 model, the effective nucleon mass in the

nuclear matter can be obtained from the Dirac equa-

tion of the nucleon,

M∗
N =MN+gσσ0 , (34)

and the expectation value of the scalar field σ0 is cal-

culated repeatedly with the equation

m2
σ
σ0 +g2σ

2
0 +g3σ

3
0 =−gσ(ρS

p +ρS
n ). (35)

If the nonlinear self-coupling terms of the scalar me-

son are considered, the effective nucleon mass in

Eq. (34) is different from that in Eq. (29) although

they are same as one another in Walecka-1 model,

where the nonlinear self-coupling terms of the scalar

meson are ignored. Therefore, the self-consistent cal-

culation is realized differently in the relativistic mean-

field approximation and relativistic Hartree approxi-

mation of Walecka-2 model.

Because of the strong coupling between hadrons,

the nuclear systems can only be studied approxi-

mately and effectively in the framework of quan-

tum field theory, and the renormalization is even

meaningless on nuclear systems. In nuclear many-

body theories, the self-consistency should be consid-

ered, and the different interacting propagators should

be adopted in the calculation of different order ap-

proaches.

4 Density-dependent relativistic mean-

field method

According to the self-energies of the scalar meson

and vector meson in Eqs. (22) and (25), the screen-

ing masses of the mesons in the nuclear matter can

be extracted directly at the limit of zero momentum

k → 0. A more detailed derivation can be found in

our previous article
[12]

. The screening masses of the

scalar meson, the vector meson and ρ meson can be

written as

m∗
σ
=

√

m2
σ
+
g2

σ
(ρp

S +ρn
S)

M∗
N

, (36)
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m∗
ω

=

√

m2
ω

+
g2

ω
(ρp

S +ρn
S)

2M∗
N

, (37)

and

m∗
ρ
=

√

m2
ρ
+
g2

ρ
(ρp

S +ρn
S)

8M∗
N

, (38)

where ρp
S and ρn

S denote the scalar densities of pro-

tons and neutrons, respectively. It can be seen from

Eqs. (36), (37) and (38) that the screening masses of

mesons increase with the nucleon number density in

the nuclear matter.

By replacing the meson masses in the Lagrangian

of Eq. (1) with the corresponding screening masses of

mesons, respectively, a density-dependent relativistic

mean-field method is obtained
[12]

. With the parame-

ters

g2
σ

m2
σ

= 8.297fm2,
g2

ω

m2
ω

= 3.683fm2,
g2

ρ

m2
ρ

= 5.187fm2,

(39)

we obtain a saturation density of 0.149fm−3, a bind-

ing energy of 16.669MeV, a compression modulus of

280.1MeV, a symmetry energy coefficient of 32.8MeV

and an effective nucleon mass of 0.808MN for the sym-

metric nuclear matter.

Recently, we noticed the density-dependent rel-

ativistic Hartree-Fock method developed by W. H.

Long et al
[20]

, where the meson-nucleon coupling con-

stants are taken as functions of the nucleon number

density. Considering the ratio of the meson-nucleon

coupling constant and the corresponding meson mass

can be treated as one parameter in the conventional

relativistic mean-field calculations on the properties

of nuclear matter, either changing the coupling con-

stants as functions of the nucleon number density or

replacing the meson masses with their correspond-

ing screening masses would be a choice to achieve

a density-dependent relativistic many body method.

The ratios of the density-dependent coupling con-

stants and the corresponding meson masses with the

parameters PKO1 in Ref. [20] and the ratios of the

fixed coupling constants and the screening meson

masses with the parameters in Eq. (39) as functions of

the nucleon number density are shown in Fig. 5. Al-

though the values of gσ(ρ)/mσ, gω(ρ)/mω, gρ(ρ)/mρ

in the model of Ref. [20] are far different from the

corresponding values of gσ/m
∗
σ
, gω/m

∗
ω
, gρ/m

∗
ρ

in our

model, they all decrease with the increasing nucleon

number density. It implies that these two kinds of

density-dependent models are consistent with each

other. Actually, the interaction between two fixed

nucleons in the nuclear matter becomes weaker if the

screening effect of the nuclear medium is considered.

In fact, either density-dependent coupling con-

stants or density-dependent meson masses mean in-

cluding the nonlinear density-dependent potential in

the relativistic many body method. This point can

be seen easily from the equations on the expectation

values of mesons in the relativistic mean-field approx-

imation. In Fig. 5, the values of gσ(ρ)/mσ and gσ/m
∗
σ

decrease rapidly with the increasing nucleon number

density, however, the corresponding values for ρ me-

son change slightly with the nucleon number density,

it means the nonlinear attractive interaction between

nucleons by exchanging scalar mesons is more impor-

tant to construct the density-dependent nuclear mod-

els.

Fig. 5. Ratios of the density-dependent cou-

pling constants and the meson masses with

the parameters PKO1
[20]

and ratios of the

coupling constants and the screening meson

masses with the parameters in Eq. (39) as

functions of the nucleon number density ρ.

The solid lines are for cases of σ meson, and

the dashed lines forωmeson, and the dot lines

for the ρ meson. Those lines for the model

in Ref. [20] are labeled in the figure, and the

lines without special labels are for the model

in Ref. [12].

5 Summary

In conclusion, an effective formalism to solve nu-

clear many-body problems is evaluated, and we find

this formalism with off-shell propagators gives the

same results as those in Walecka model in the calcu-
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lation of self-energies of particles in nuclear matter.

The self-consistency of Walecka-2 model is discussed

in the relativistic mean-field approximation. In addi-

tion, the relativistic many body method with density-

dependent coupling constants is compared with the

method with density-dependent meson masses.
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