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Abstract A simple extension of the standard model is to introduce n heavy right-handed Majorana neutrinos

and preserve its SU(2)L×U(1)Y gauge symmetry. Diagonalizing the (3+n)× (3+n) neutrino mass matrix,

we obtain an exact analytical expression for the effective mass matrix of νe, νµ and ντ. It turns out that the

3×3 neutrino mixing matrix V , which appears in the leptonic charged-current weak interactions, must not be

exactly unitary. The unitarity violation of V is negligibly tiny, however, if the canonical seesaw mechanism

works to reproduce the correct mass scale of light Majorana neutrinos. A similar conclusion can be drawn in

the realistic Type-/ seesaw models.
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1 Introduction

Recent solar
[1]

, atmospheric
[2]

, reactor
[3]

and

accelerator
[4]

neutrino oscillation experiments have

provided us with very robust evidence that neutrinos

are massive and lepton flavors are mixed. This great

breakthrough opens a new window to physics be-

yond the standard model (SM). Indeed, the fact that

the masses of neutrinos are considerably smaller than

those of charged leptons and quarks remains a big

puzzle in particle physics. Although a lot of theoret-

ical models about the origin of neutrino masses have

been proposed at either low or high energy scales
[5]

,

none of them has proved to be very successful and

conceivable.

Within the SM, neutrinos are massless particles

and lepton flavor mixing does not exist. The flavor

eigenstates of three charged leptons (e, µ, τ) and three

neutrinos (νe, νµ, ντ), which appear in the leptonic

charged-current weak interactions

−Lcc =
g√
2

(e, µ, τ)L γµ









νe

νµ

ντ









L

W−
µ + h.c. , (1)

can therefore be identified with their corresponding

mass eigenstates. Beyond the SM, neutrinos may

gain tiny but non-vanishing masses through certain

new interactions at low or high energy scales. In this

case, there is the phenomenon of lepton flavor mixing

in analogy with that of quark flavor mixing. Iden-

tifying the flavor eigenstates of charged leptons with

their mass eigenstates, we may express νe, νµ and ντ

in terms of their mass eigenstates ν1, ν2 and ν3 as

follows:
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. (2)

The transformation matrix V in Eq. (2) is just the 3×3

lepton flavor mixing matrix, sometimes referred to as

the Maki-Nakagawa-Sakata (MNS) matrix
[6]
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the Cabibb-Kobayashi-Maskawa (CKM) quark mix-

ing matrix
[7]

, which is required to be unitary in the

SM, the MNS matrix V comes from new physics

beyond the SM and its unitarity is not necessar-

ily guaranteed in a specific model. If neutrinos are

Majorana particles and V is exactly unitary, one

can parametrize V in terms of three mixing angles

and three CP-violating phases
[8]

. If the unitarity of

V were significantly violated, more free parameters

would in general be needed to describe neutrino mix-

ing. A stringent test of the unitarity of V turns out

to be one of the most important goals in the future

neutrino factories and super-beam facilities.

The main purpose of this short paper is to show

why the 3×3 MNS matrix V is not exactly unitary in

a variety of neutrino models incorporated with the fa-

mous seesaw mechanism
[9]

. To be explicit, we extend

the SM by including n heavy right-handed Majorana

neutrinos and keeping its SU(2)L×U(1)Y gauge sym-

metry invariant. After diagonalizing the (3+n)×(3+n)

neutrino mass matrix, we arrive at an exact analyti-

cal expression for the effective mass matrix of νe, νµ

and ντ. Then it becomes obvious that the MNS ma-

trix V , which appears in the leptonic charged-current

weak interactions, is not exactly unitary. We find that

the unitarity violation of V is negligibly tiny, unless

the canonical seesaw mechanism fails to reproduce

the correct mass scale of light Majorana neutrinos. A

similar conclusion can be drawn in the realistic Type-

/seesaw mechanism.

2 Analytical results

Let us make a simple extension of the SM by in-

troducing n heavy right-handed Majorana neutrinos

Ni (for i = 1, · · · ,n) and keeping the Lagrangian of

electroweak interactions invariant under the SU(2)L×
U(1)Y gauge transformation. In this case, the La-

grangian relevant for lepton masses can be written

as

−Llepton = lLYleRH +lLYνNRHc+
1

2
N c

RMRNR+h.c. ,

(3)

where lL denotes the left-handed lepton doublets;

eR and NR stand respectively for the right-handed

charged-lepton and Majorana neutrino singlets; H is

the Higgs-boson weak isodoublet (with Hc ≡ iσ2H
∗);

MR is the heavy Majorana neutrino mass matrix; Yl

and Yν are the coupling matrices of charged-lepton

and neutrino Yukawa interactions. After sponta-

neous gauge symmetry breaking, the neutral com-

ponent of H acquires the vacuum expectation value

v ≈ 174GeV. Then we arrive at the charged-lepton

mass matrix Ml = vYl and the Dirac-type neutrino

mass matrix MD = vYν. The overall lepton mass term

turns out to be

−L
′
lepton= eLMleR+

1

2
(νL,N c

R)

(

0 MD

MT
D MR

)(

νc
L

NR

)

+h.c. ,

(4)

where e, νL and NR represent the column vectors of

(e,µ,τ), (νe,νµ,ντ)L and (Nα,Nβ, · · · )R fields, respec-

tively. In obtaining Eq. (4), we have used the relation

νLMDNR = N c
RMT

Dνc
L as well as the properties of νL

(or NR) and νc
L (or N c

R)
[8]

. Note that the scale of MR

can naturally be much higher than the electroweak

scale v, because those right-handed Majorana neutri-

nos are SU(2)L singlets and their corresponding mass

term is not subject to the magnitude of v.

Without loss of generality, it is convenient to

choose a flavor basis in which Ml is diagonal, real

and positive (i.e., the flavor and mass eigenstates of

three charged leptons are identified with each other).

Then we concentrate on the (3+n)×(3+n) neutrino

mass matrix in Eq. (4), where MD is a 3× n ma-

trix and MR is an n×n matrix. The typical number

of n is of course n=3, but n=2 is also a very inter-

esting option as discussed in the so-called minimal

seesaw models
[10]

. One may diagonalize the symmet-

ric (3+n)×(3+n) neutrino mass matrix by use of a

unitary transformation matrix:

(

V R

S U

)†(

0 MD

MT
D MR

)(

V R

S U

)∗

=

(

Mν 0

0 MR

)

, (5)

where R, S, U and V are the 3×n, n×3, n×n and

3×3 sub-matrices, respectively; Mν and MR denote

the diagonal 3×3 and n×n mass matrices with eigen-

values mi and Mj (for i = 1,2,3 and j = 1, · · · ,n),

respectively. Eq. (5) yields

S†MT
DR∗+V †MDU∗+S†MRU∗ = 0 , (6)
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and

Mν = S†MT
DV ∗+V †MDS∗+S†MRS∗ ,

MR = U †MT
DR∗+R†MDU∗+U †MRU∗ . (7)

With the help of Eq. (6), S† can be expressed as

S† =−V †MDM−1
R

[

1+MT
DR∗(U∗)−1M−1

R

]−1
. (8)

Combining Eqs. (7) and (8), we arrive at

V MνV T = −MDM−1
R MT

D +∆V ,

UMRUT = MR+∆U ,
(9)

where

∆V = MDM−1
R MT

DR∗RT−
MDM−1

R (U †)−1R†MDS∗V T ,

∆U = MT
DR∗UT−MRS∗ST .

(10)

It is worth remarking that we have made no approx-

imation in obtaining Eqs. (9) and (10). Because the

(3+n)×(3+n) transformation matrix in Eq. (5) is uni-

tary, its four sub-matrices satisfy the following con-

ditions:

V †V +S†S = V V †+RR† = 1 ,

U †U +R†R = UU †+SS† = 1 ;
(11)

and

V †R+S†U = V S†+RU † = 0 ,

R†V +U †S = SV †+UR† = 0 .
(12)

Obviously, U , V , R and S are in general not unitary.

Note that V is just the MNS neutrino mixing ma-

trix. To see this point more clearly, one may re-

express Lcc in Eq. (1) by using the mass eigenstates

of three charged leptons and those of (3+n) neutrinos.

The latter can be denoted as νi (for i = 1,2,3) and

Nn (for i = 1, · · · ,n), which are related to (νe,νµ,ντ)

through
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L

= V
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...

Nn









L

. (13)

Then Lcc reads

−Lcc =
g√
2

[

(e, µ, τ)L V γµ









ν1

ν2

ν3









L

W−
µ +

(e, µ, τ)L Rγµ









N1

...

Nn









L

W−
µ

]

+h.c. . (14)

We observe that V enters the charged-current inter-

actions between three charged leptons (e,µ,τ) and

three well-known light neutrinos (ν1,ν2,ν3), while

R is relevant to the charged-current interactions be-

tween (e,µ,τ) and (N1, · · · ,Nn). Thus V is the MNS

matrix. The unitarity of V is naturally violated, due

to the presence of non-vanishing R and S. A prelim-

inary upper bound on the matrix elements of R is at

the O(10−3) level, extracted from some precise elec-

troweak data
[11]

. In the limit of R→ 0 and S → 0, V

turns out to be exactly unitary.

3 Approximation and illustration

For simplicity, we denote the mass scales of MR

(or MR) and MD as M0 and m0, respectively. Of

course, M0 � v and m0 . v are naturally expected in

almost all the reasonable extensions of the SM. The

smallness of m0/M0 implies that the sub-matrices R

and S are strongly suppressed in magnitude. This

point can straightforwardly be observed from Eq. (8),

which approximates to

S† ≈−V MDM−1
R ∼ O(m0/M0) . (15)

On the other hand, Eq. (5) yields

R = +MDU∗M
−1

R ∼ O(m0/M0) . (16)

These results, together with Eqs. (11) and (12), lead

to

V †V ≈ V V † ≈ 1 ,

U †U ≈ UU † ≈ 1 ,
(17)

which hold up to O(m2
0/M

2
0 ). Then we arrive at the

light Majorana neutrino mass matrix

Mν ≡V MνV T ≈−MDM−1
R MT

D (18)

and the heavy Majorana neutrino mass matrix MR ≈
UMRUT from Eq. (9) as two good approximations.
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Eq. (18) is just the well-known (Type-I) seesaw re-

lation between Mν and MR
[9]

. It indicates that the

mass scale of three light neutrinos is of O(m2
0/M0). In

other words, the smallness of three left-handed neu-

trino masses is essentially attributed to the largeness

of n right-handed neutrino masses.

To illustrate how the unitarity of V or U is slightly

violated in a more explicit way, let us consider the

simplest seesaw model with only a single heavy right-

handed Majorana neutrino (i.e., n = 1). In this spe-

cial case, MR = M0 holds1). The 3×1 matrix R and

the 1×3 matrix S can be written as

R =









rx

ry

rz









, ST =









sx

sy

sz









. (19)

Then we obtain

R†R = |rx|2 + |ry|2 + |rz|2 ≡ |r|2 ,

SS† = |sx|2 + |sy|2 + |sz|2 ≡ |s|2 .
(20)

Note that |r| = |s| ∼ m0/M0 holds. In view of

Eq. (11), the departure of U †U or UU † from unity

is at the O(m2
0/M

2
0 ) level. On the other hand,

RR† =









|rx|2 rxr∗
y rxr∗

z

r∗
xry |ry|2 ryr

∗
z

r∗
xrz r∗

yrz |rz |2









,

S†S =









|sx|2 s∗
xsy s∗

xsz

sxs
∗
y |sy|2 s∗

ysz

sxs∗
z sys

∗
z |sz|2









.

(21)

It becomes obvious that the magnitude of each ma-

trix element of RR† or S†S is at most of O(|r|2) or

O(|s|2). Hence the deviation of V †V or V V † from the

3×3 identity matrix is also at the O(m2
0/M

2
0 ) level.

Given m0 ∼ 100GeV and m2
0/M0 ∼ 0.1eV, one

may easily obtain M0 ∼ 1014GeV. The latter is just

the typical mass scale of heavy right-handed Majo-

rana neutrinos in most of the realistic seesaw mod-

els. This estimate implies that the magnitude of R

or S is of O(m0/M0) ∼ O(10−12). Hence the above-

obtained seesaw formula is valid up to a high accuracy

of O(m2
0/M

2
0 ) ∼ O(10−24). Noticeably, the unitar-

ity of the 3× 3 MNS matrix is only violated at the

O(10−24) level in such a canonical seesaw scenario.

It is therefore very safe to neglect the extremely tiny

O(m2
0/M

2
0 ) correction to both Mν and V .

The accuracy of Eq. (18) should be highlighted,

because this seesaw formula was naively regarded

as an approximation of O(m0/M0). Our instruc-

tive analysis shows that its validity is actually up to

O(m2
0/M

2
0 ). Furthermore, the unitarity violation of

V or U can only take place at the O(m2
0/M

2
0 ) level.

That is why the 3×3 MNS neutrino mixing matrix is

almost unitary in the realistic seesaw models.

4 Concluding remarks

Note that Eq. (18) is usually referred to as the

Type-. seesaw relation. A somehow similar relation,

the so-called Type-/ seesaw formula, can be derived

from the generalized lepton mass term

−L
′′
lepton= eLMleR+

1

2
(νL,N c

R)

(

ML MD

MT
D MR

)(

νc
L

NR

)

+h.c. ,

(22)

where ML may result from a new Yukawa interac-

tion term which violates the SU(2)L ×U(1)Y gauge

symmetry
[5]

. The mass scale of ML is likely to be

much lower than the electroweak scale v. Following

the strategies outlined above, one may diagonalize the

(3+n)×(3+n) neutrino mass matrix in Eq. (22) and

arrive at the effective light Majorana neutrino mass

matrix

Mν ≡V MνV T ≈ML−MDM−1
R MT

D , (23)

where V is the 3× 3 MNS neutrino mixing matrix.

This result is just the Type-/ seesaw relation. Since

the mass scale of ML is expected to be smaller than

that of MD in those realistic models
[5]

, Eq. (23) is

valid up to the accuracy of O(m2
0/M

2
0 ). The uni-

tarity of V is also violated at the O(m2
0/M

2
0 ) level,

analogous to the Type-. seesaw case.

It is worthwhile to mention that a quite novel

(recursive expansion) recipe has been developed by

1)Because the rank of MR equals one, the seesaw relation in Eq. (18) implies that Mν is also a rank-one neutrino mass

matrix. Thus two of its three mass eigenvalues must vanish, leading to a vanishing neutrino mass-squared difference. This result

is certainly in contradiction with current solar and atmospheric neutrino oscillation experiments. In other words, the canonical

seesaw model with a single heavy right-handed Majorana neutrino is not realistically viable.
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Grimus and Lavoura
[12]

to calculate the effective mass

matrices of three light neutrinos and three heavy neu-

trinos with arbitrary precision in the seesaw mecha-

nisms. Their language, which can be related with

ours by certain transformations, is less transparent

in describing the 3×3 MNS matrix and discussing its

tiny unitarity violation.

We conclude that the 3×3 MNS matrix V , which

appears in the leptonic charged-current weak inter-

actions, must not be exactly unitary in the canoni-

cal (Type-.) and Type-/ seesaw models. Its uni-

tarity violation is extremely small, as required by

the models themselves to reproduce the correct mass

scale of light Majorana neutrinos. Nevertheless, the

unitarity of V could be more significantly violated

by other sources of new physics (e.g., the existence

of additional heavy charged leptons or light sterile

neutrinos
[13]

). We remark that testing the unitarity

of V , both its normalization conditions and its or-

thogonality relations
[14]

, is one of the important ex-

perimental tasks to be fulfilled in the future neutrino

factories and super-beam facilities.

We would like to thank W.L. Guo and J.W. Mei

for useful discussions.
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