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Abstract An improved kinematic fit method is developed for analyzing all-photon events, where the inter-

action point is unknown. The fitting algorithm is checked with Monte Carlo samples to ensure that the fitting

program works properly. This is applied to the Monte Carlo simulated ψ(2S) decays. A higher efficiency is

achieved. This method can be generally applied to analyzing all-photon events at electron-positron collider.
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1 Introduction

Kinematic fit is used extensively for analyzing

data in high-energy physics experiments. It requires

energy-momentum conservation between initial and

final states for one event to separate signal and back-

ground, to improve momentum resolution, and so on.

In general, the coordinates of the interaction point

(IP, the primary vertex) are used in the kinematic fit

as known quantities.

At the Beijing Electron-Positron Collider

(BEPC), the beam shape is characterized by a three-

dimension Gaussian distribution. The beam length

is about 5cm, and the beam radius is 0.9mm in the

horizontal direction (x) and 0.05mm in the verti-

cal direction (y). The interaction point is thus also

characterized by a Gaussian distribution
[1]

.

For the process e+e− → ψ(2S) →hadrons at the

Beijing Spectrometer (BES)
[2]

, the IPs can be de-

termined by the intersection point of the multiple

charged tracks. Fig. 1 shows the z coordinate distri-

bution of those events. It’s a Gaussian distribution

with a standard deviation of about 4.0cm.

For a charged track, e.g., an electron, the z coor-

dinate of the vertex is got with the information of the

Main Drift Chamber (MDC); the resolution of the z

coordinate in the Barrel Shower Counter (BSC) can

be obtained by projecting the MDC track into the

BSC without the necessity to know the IP. For exam-

ple, the resolution of z coordinate in the BSC is about

2.1cm from studying the Bhabha events
[3]

, smaller

than the standard deviation of the IP in z direction.

For the events with the final state containing only

neutral tracks, the z coordinate of the vertex can’t be

determined without the information of the MDC. So

it maybe lead to a big difference if one assumes that

the neutral track comes from the origin point instead

of the IP.

Fig. 1. The distribution of IP in the z direction

measured with ψ(2S)→hadrons at BES/.

In this paper, the principle of general Least-

Squares estimation with constraints is expressed and
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then applied to the process ψ(2S) → γγγ. At last

a check is performed with Monte Carlo simulated

events.

2 Principle

Let η be a vector of N observable, for which the

first approximation values (measurements) Y with

errors contained in the covariance matrix V (Y ) are

given. In addition, a set of J unmeasurable variables

ξ = {ξ1, . . . , ξJ} are unknown. The N measurable and

the J unmeasurable are related and have to satisfy a

set of K constraint equations,

fk(η,ξ ) = 0, k = 1,2, · · · ,K.

According to the Least-Squares Principle the best es-

timates of the unknown η and ξ should satisfy the

following equations
{

Q2(η) = (Y −η)TV −1(Y )(Y −η) = minimum,

f(η,ξ) =0.
(1)

The problem of Eq. (1) is often resolved by the

method of the Lagrangian multipliers. Introducing

K additional unknowns λ = {λ1, · · · ,λk}, the prob-

lem is rephrased by requiring

Q2(η,ξ,λ) = (Y −η)TV −1(Y )(Y −η)+

2λTf( η,ξ ) = minimum. (2)

When the derivatives of Q2 with respect to all

N +J +K unknowns are put equal to zero, a set of

equations written in vector form are deduced as fol-

lows

V −1(Y −η)−F T
η λ =0, (3)

FT
ξ λ =0, (4)

f(η,ξ) =0. (5)

where the matrices Fη (of dimension K×N) and Fξ

(of dimension K×J) are defined by

(Fη)ki
=

∂fk

∂ηi

, (Fξ)kj
=

∂fk

∂ξj

. (6)

The solution of the set of Eqs. (3)—(5) for the

N + J + K unknowns must in the general case be

found by iterations.

A Taylor expansion of the constraint Eq. (5) is

performed in the point (ην ,ξν). When the terms of

second and higher orders are neglected, it can be writ-

ten as

fν +F ν
η (ην+1−ην)+F ν

ξ (ξν+1−ξν) = 0, (7)

where all superscripts ν indicate that f ν , F ν
η , F ν

ξ are

to be evaluated at the point (ην ,ξν). Eqs. (3) and

(4) now read

V −1(ην+1−Y )+(F T
η )νλν+1 =0, (8)

(F T
ξ )νλν+1 =0. (9)

With Eqs. (7), (8) and (9), all unknowns of the (ν+1)-

th iteration can be deduced by the quantities of the

preceding iteration.

When the notations are introduced below

r≡fν +F ν
η (Y −ην), (10)

S ≡F ν
η V (FT

η )ν , (11)

S is a symmetric matrix of dimension K×K, in suc-

cession

ξν+1 = ξν −(F T
ξ S−1Fξ)

−1FT
ξ S−1r, (12)

λν+1 = S−1 [r+Fξ(ξ
ν+1−ξν)] , (13)

ην+1 = Y −V F T
η λν+1. (14)

With the new values for ξν+1, λν+1 and ην+1, the

value of function Q2(ν+1) for the (ν+1)-th iteration is

calculated and compared to the previous value Q2(ν).

The iteration should be continued until a satisfactory

solution has been found
[4, 5]

.

3 Application

Now let us apply the previous formulation to the

kinematic analysis of the following decay channel

ψ(2S)→γ1γ2γ3.

There are 9 observable parameters

η = {φ1,tanΛ1,
√

E1,φ2,tanΛ2,
√

E2,φ3,tanΛ3,
√

E3},

where φi is the azimuthal angle, tanΛi = cotθi with

θi being the polar angle, and Ei the deposited energy

of the photon i. They have corresponding measure-

ments Y and errors contained in the covariance ma-

trix V (Y ). The decay vertex of ψ(2S) from where the

photons come is unmeasurable for all neutral events



672 p U Ô n � Ø Ô n ( HEP & NP ) 1 30 ò

at BES/. But fortunately the x, y coordinates of

the decay vertex are very small and are known very

precisely, thus the x, y coordinates are corrected with

their mean values in order to simplify the problem.

One unmeasurable variable is the z coordinate of the

decay vertex of ψ(2S), i.e., ξ = {zvtx}.
According to the momentum and energy conser-

vation, four constraint equations are satisfied in the

kinematic fit, they are

f1 = p1x +p2x +p3x = 0,

f2 = p1y +p2y +p3y = 0,

f3 = p1z +p2z +p3z = 0,

f4 = E1 +E2 +E3−Ecm = 0,

where

pix = Ei cosΛi cosφi,

piy = Ei cosΛi sinφi,

piz = Ei sinΛi.

The matrices Fη (of dimension 4×9) and Fξ (4×1)

are obtained from the derivatives of four constraint

equations fk(k = 1,2,3,4) with respect to the observ-

able parameters η and the unmeasurable ξ. They

are:

Fη =













−p1y a1p1x b1p1x −p2y a2p2x b2p2x −p3y a3p1x b3p3x

p1x a1p1y b1p1y p2x a2p2y b2p2y p1x a3p1y b3p3y

0 a1p1z +p1xy b1p1z 0 a2p2z +p2xy b2p2z 0 a3p3z +p3xy b3p3z

0 0 2
√

E1 0 0 2
√

E2 0 0 2
√

E3













,

where

ai =−tanΛi/(1.0+tan2 Λi),

bi = 2/
√

Ei, (i = 1,2,3)

and

Fξ =





























3
∑

i=1

RiEi cosφi(zi−zvtx)
√

[R2
i +(zi−zvtx)2]3

3
∑

i=1

RiEi sinφi(zi−zvtx)
√

[R2
i +(zi−zvtx)2]3

3
∑

i=1

−R2
i Ei

√

[R2
i +(zi−zvtx)2]3

0





























,

where Ri is the distance from IP to the first hit layer

in φ plane, zi is the z coordinate of the shower at the

first hit layer.

To start the iteration the measurements are taken

as the initial η0,

η0 = {φ0
1,tanΛ0

1,
√

E0
1 ,φ

0
2,tanΛ0

2,
√

E0
2 ,φ0

3,tanΛ0
3,

√

E0
3}.

For ξ0, the initial value is taken as 0, i.e. the ori-

gin point. Thus the initial value of the vector r from

Eq. (10) is

r0 = f 0 = (f 0
1 ,f 0

2 ,f 0
3 ,f 0

4 ).

Inserting the approximations (η0,ξ0), F 0
η and F 0

ξ can

be found. The 4 × 4 matrix S is obtained from

Eq. (11),

S = F 0
η V (F 0

η )T.

Inverting this matrix, the values of ξ1,λ1,η1 are

found in succession from Eqs. (12)—(14). Q2 is cal-

culated with these first estimates, and the process is

continued. When the difference of the four momenta

between two iterations is small enough (less than 10−4

of the center mass energy), the desired minimum is

reached. The values of ξ,λ,η in the final iteration

are the solution of the kinematic fit.

4 Test using Monte Carlo simulated

events

The reliability of the iteration procedure was stud-

ied with Monte Carlo simulation. For the process

ψ(2S)→γπ0 →γγγ, three phase space Monte Carlo

samples, each of 20 000 events, were generated. For

these three samples, the x and y coordinates of the

vertex are fixed at the origin point, while the z coordi-

nate is fixed to 0, 4 and 10cm, respectively, and their

resolutions are set to be zero, i.e., σx = σy = σz = 0.

Table 1 lists the input and output values of the z

coordinates of the vertex and the corresponding reso-

lutions given by using the above iteration procedures

to the three Monte Carlo samples. The output values
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for z coordinate are consistent with the input values

within 6% for every sample (Fig. 2). The resolutions

got from the three Monte Carlo samples are almost

the same (about 2.2cm), which reflect the position

resolution of the BSC. These all indicate that the it-

eration procedure is correct.

Table 1. Monte Carlo input/output test of the

z coordinate of the vertex. µ and σ are the

mean value and the standard deviation of the

distribution (unit: cm).

input output
sample

µ σ µ σ

1 0.0 0.0 0.05±0.03 2.15±0.03

2 4.0 0.0 3.77±0.03 2.16±0.03

3 10.0 0.0 9.45±0.03 2.12±0.03

Fig. 2. The z coordinate distributions of the

vertex for ψ(2S) → γπ0
→ γγγ Monte Carlo

samples. From (a) to (c), the input IPs are 0,

4, and 10cm, respectively.

A direct consequence of the improved kinematic

fit (with a free parameter zvtx and the energy-

momentum conservation, there are 3 constraints, so

it is called 3C-fit hereafter) is the increase of the ef-

ficiency as compared with the general kinematic fit

where only the energy-momentum conservation (4C-

fit) is required. The efficiencies of the three sam-

ples are almost the same (about 4.3%) with the 3C-

fit. For Sample 2, the efficiency with the 3C-fit is

6% bigger than that with the 4C-fit. For Sample 3,

only less than 1% events pass the 4C-fit. This indi-

cates that the 4C-fit program is powerless for these

events. In fact, more events are selected for J/ψ data

at BES/ when the 3C-fit is used, which agrees with

the Monte Carlo expection. Monte Carlo simulation

also shows that the 3C-fit doesn’t improve the mass

resolution of π0 signal.

5 Conclusion and discussion

According to the principle of general Least-

Squares estimation with constraints, an improved

kinematic fit method is developed for analyzing all-

photon events at BES/. The fitting program is

checked with Monte Carlo sample to ensure that the

fitting program works properly. This is applied to the

Monte Carlo simulated ψ(2S) decays into γγγ final

states, a higher efficiency is achieved. This method

is useful not only for ψ(2S) decays, but also for J/ψ,

ψ(3770) decays, not only for the analyses at BES/,

but also for the analyses at other high energy exper-

iments.
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