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Abstract According to the method of path integral quantization for the canonical constrained system in

Faddeev-Senjanovic scheme, we quantize the supersymmetrical electrodynamic system in general situation,

and obtain the generating functional of Green function. Another first class constraint is obtained by making

the linear combination of several primary constraints, the generator of gauge transformation is constructed,

gauge transformations of all the different fields are deduced. Utilizing the consistency equation of gauge fixing

condition to deduce another gauge fixing condition, we find that the secondary constraint of the system is an

Euler-Lagrange equation which is just the conversation law of electric charge. Thus, we do not need to calculate

the other secondary constraints step by step, and get no new constraints naturally. So, the Faddeev-Senjanovic

path integral quantization of the supersymmetrical electrodynamic system is simplified.
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1 Introduction

The minimal supersymmetrical standard model

(MSSM) is currently the most favored candidate for

extension of the standard model. Researches on

supersymmetrical quantum field theories have great

meaning to the possible discovery of supersymmetry.

Kushreshtha and Müller-Kirsten quantized 1+1

dimensional superfields in Faddevv-Jackiw scheme[1];

Batalin presented a superfield formulation of the

quantization program for the theories with the first

and second class constraints, and set up a phase-

space path integral expression entirely in terms of

superfields, further made BRST transformations and

canonical transformations enter on equal footing[2].

Rupp et al. obtained, in the level of supersym-

metrical quantum field theory, Slazvnov-Taylor iden-

tity satisfying the invariance of the supersymmetrical

transformations[3].

Supersymmetrical quantum electrodynamics

(SQED) is a simple model of MSSM, and its ac-

tion is a singular Lagrange system. Using Faddeev-

Senjanovic path integral quantization scheme we

quantize the system of SQED, construct the gene-

rator of gauge transformation, and further give

gauge transformation and the generating functional

of Green functions.

2 Hamilton system

Under Wess-Zumino gauge, the SQED action is

obtained in terms of its component fields after the

integral of Grassmann coordinates of the action, i.e.,

the Lagrangian density is[4]
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LSQED = −Fµν(x)F µν(x)−4iλ(x)σµ ∂µ λ(x)+

i(D∗
µψ1(x))σµψ1(x)+i(D∗

µψ2)σµψ2 +

(DµB1)(D∗
µB∗

1 )+(DµB2(x))(D∗
µB∗

2 (x))−
e√
2

[
λ(x)(ψ1(x)B1(x)−ψ2(x)B2(x))+

λ(x)(ψ1(x)B∗
1 (x)−ψ2(x)B∗

2 (x))
]
+

m
[
ψ1(x)ψ2(x)+ψ1(x)ψ2(x)

]−

m2
[
B1(x)B∗

1 (x)+B2(x)B∗
2 (x)]−

e2

32
[
B1(x)B∗

1 (x)−B2(x)B∗
2 (x)

]
, (1)

where

Dµ = ∂µ−1
2
ieAµ,D∗

µ = ∂µ +
1
2
ieAµ,Fµν = ∂µ Aν−∂ν Aµ,

(2)

Aµ is gauge boson field, λ is the gaugino fermionic

partner of Aµ, B1 and B2 are supersymmetrical part-

ners of ψ1 and ψ2 which are two-component fermionic

matter fields，Fµν(µ,ν =0,1,2,3) are gauge field

strength tensors，e and m, respectively, represent

electro-charge and mass parameters, All spinors are

two-component Weyl spinors. We take metrics[5] to

be gµυ =(1,−1,−1,−1)，and introduce the Pauli ma-

trices σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
,

σ3 =
(

1 0
0 −1

)
, σ0 =σ0, σi =−σi.

3 Analysis for constraints of the

Hamilton system

Since the Lagrangian of the SQED system is sin-

gular, we discuss its constraints in phase space, the

canonical momenta conjugate to the component fields

are
πµ = 4Fµ0, πλ =0, πλ =−4iλσ0,

πB1 = D∗
0B

∗
1 =

(
∂0 +

1
2
ieA0

)
B∗

1 ,

π∗B1
= D0B1 =

(
∂0−1

2
ieA0

)
B1,

πB2 = D∗
0B

∗
2 =

(
∂0 +

1
2
ieA0

)
B∗

2 ,

π∗B2
= D0B2 =

(
∂0−1

2
ieA0

)
B2,

πψ1 = 0, πψ1
=−iσ0ψ1,

πψ2 = 0, πψ2
=−iσ0ψ2.

(3)

The canonical Hamiltonian density is given by

Hc = −A0 ∂i π
i− 1

8
πiπ

i +πB1πB∗1 +

1
2
ieA0(πB1B1−πB∗1 B∗

1 )+πB2πB∗2 +

1
2
ieA0(πB2B2−πB∗2 B∗

2 )+

1
2
eA0(ψ1 σ0ψ1 +ψ2 σ0ψ2)+

FijF
ij−(DiB1)(D∗

i B
∗
1 )−(DiB2)(D∗

i B
∗
2 )−

i(D∗
i ψ1)σiψ1− i(D∗

i ψ2)σiψ2 +

e√
2

[
λ(ψ1B1−ψ2B2)+λ(ψ1B

∗
1−ψ2B

∗
2 )

]
+

4iλσk ∂k λ−m(ψ1ψ2 +ψ1ψ2)−

m2(B1B
∗
1 +B2B

∗
2 )+

e2

32
(B1B

∗
1−B2B

∗
2 ). (4)

According to Dirac constraint theory[6], it follows that

there are 7 primary constraints

φ0
1 = π0≈ 0, φ0

2 =πλ≈ 0, φ0
3 =πλ +4iλσ0≈ 0,

φ0
4 = πψ1 ≈ 0, φ0

5 =πψ1
+iσ0ψ1≈ 0, φ0

6 =πψ2 ≈ 0,

φ0
7 = πψ2

+iσ0ψ2≈ 0,

(5)

where the symbol “≈” means weak equality in Dirac

sense[7].

The total Hamiltonian is given by

HT =
∫
d4x

(
Hc +u1φ

0
1 +u2φ

0
2 +u3φ

0
3 +u4φ

0
4 +

u5φ
0
5 +u6φ

0
6 +u7φ

0
7

)
. (6)

The consistency equations of primary constraints are

φ̇0
l = {φ0

l ,HT}P≈ 0, (l =1,2,3,4,5,6,7,). (7)

Assume that F and G are functions of the

Grassmann canonical variables (ηα,πα), the Possion

Bracket is given by[8]

{F,G}=
∂r F

∂ηα

∂l G

∂πα

−(−1)nF nG
∂r G

∂ηα

∂l F

∂πα

, (8)

where nF ,nG represent the Grassmann parities of

functions F and G, respectively. The Lagrangian

multipliers u2,u3,u4,u5,u6,u7 are solved out by con-

sistency equations of primary constraints φl(l =

2,3,4,5,6,7). Consistency of φ1 leads to a secondary
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constraint

φ1
8 ={π0,HT}P = ∂i π

i +
1
2
ie(−B1πB1−B2πB2+

B∗
1πB∗1 +B∗

2πB∗2 )− 1
2
e(ψ1 σ0ψ1 +ψ2 σ0ψ2)≈ 0.

(9)

According to Dirac-Bergmman algorithm[8], three

situations may occur from the consistency equations:

(1) on the constraint’s surface, we get an identity

0 = 0; (2) the consistency equations are independent

of Lagrangian multipliers, we get new constraints;

(3) we get equations of Lagrangian multipliers. We

get φ1
8 as a secondary constraint, it expresses the

charge conversation law of the SQED system in phase

space, and is just an Euler-Lagrange equation when

converted to configuration space, which cannot give

new constraint. When substituting the solved La-

grangian multipliers into the consistency equation, we

also get an identity 0 = 0, and cannot obtain new con-

straint.

We obtain another first-class constraint by making

the linear combination of φ0
4,φ

0
5,φ

0
6,φ

0
7,φ

1
8, and further

renew to mark the constraints as follows

Λ1 = φ0
1,

Λ2 = (φ1
8)
′ =φ1

8−
1
2
ie(ψ2θ6−ψ1θ4−ψ1θ3 +ψ2θ5)=

∂i π
i+

1
2
ie(−B1πB1−B2πB2+B∗

1πB∗1 +B∗
2πB∗2 )+

1
2
ie(−ψ2πψ2−ψ1πψ1 +ψ1πψ1 +ψ2πψ2),

θ1 = φ0
2, θ2 =φ0

3, θ3 =φ0
4, θ4 =φ0

5, θ5 =φ0
6, θ6 =φ0

7.

(10)

In terms of the definitions of Dirac’s first and

second-classe constraints[9], we obtain that Λ1,Λ2 are

the first class of constraints, and θ1,θ2,θ3,θ4,θ5,θ6

are the second-class constraints. According to

Castellani’s method to construct generator of gauge

transformation[10], we get the generator of the system

as follows

G =
∫
d3x[ε̇(x)Λ1−ε(x)Λ2] =

∫
d3x

{
ε(ẋ)π0−ε(x)×

[
∂i π

i+
1
2
ie(−B1πB1−B2πB2+B∗

1π∗B1
+B∗

2π∗B2
)+

1
2
ie(ψ2πψ2−ψ1πψ1 +ψ1πψ1−ψ2πψ2)

]}
. (11)

Therefore, the transformations of the component

fields are

δAµ = {Aµ(x),G}p = ∂µ ε(x), δλ = {λ(x),G}=0,

δλ = {λ(x),G}=0, δB1 = {B1(x),G}=
1
2
ieε(x)B1,

δB∗
1 = {B∗

1 (x),G}=−1
2
ieε(x)B∗

1 , δB2 = {B2(x),G}=
1
2
ieε(x)B2,

δB∗
2 = {B∗

2 (x),G}=−1
2
ieε(x)B∗

2 δψ1 = {ψ1(x),G}=−1
2
ieε(x)ψ1,

δψ2 = {ψ2(x),G}=−1
2
ieε(x)ψ2, δψ1 = {ψ1(x),G}=

1
2
ieε(x)ψ1,

δψ2 = {ψ2(x),G}=
1
2
ieε(x)ψ2, δπµ = {πµ(x),G}=0,

δπλ = {πλ,G}=0, δπλ = {πλ(x),G}=0,

δπB1 = {πB1(x),G}=−1
2
ieε(x)πB1 , δπB2 = {πB2(x),G}=−1

2
ieε(x)πB2 ,

δπ∗B1
= {π∗B1

(x),G}=
1
2
ieε(x)π∗B1

, δπ∗B2
= {π∗B2

(x),G}=
1
2
ieε(x)π∗B2

,

δπψ1
= {πψ1

(x),G}=
1
2
ieε(x)πψ1

, δπψ2
= {πψ2

(x),G}=−1
2
ieε(x)πψ2

,

δπψ1 = {πψ1(x),G}=−1
2
ieε(x)πψ1 , δπψ2 = {πψ2(x),G}=

1
2
ieε(x)πψ2 .

(12)



1154 高 能 物 理 与 核 物 理 ( HEP & NP ) 第 30卷

These transformations are gauge transformations in

phase space for the system.

4 Generating functional of Green

function

The Lagrangian density is unchanged under the

gauge transformations (12). According to path in-

tegral quantization in Faddeev-Senjanovic scheme[11],

for each first-class constraint, we need to choose a

gauge fixing condition. Consider the Coulomb gauge

Ω2 = ∂i A
i≈ 0, (i=1,2,3). (13)

Using the consistency of Ω2, we obtain another

gauge fixing condition as follows

Ω1 =∇2A0− 1
4

∂i π
i≈ 0. (14)

We introduce exterior sources of fields and their

conjugate momenta (ϕα,πα), the generating func-

tional of Green function for this system is given by

Z[J,K] =
∫
DϕαDπα

∏
i,k,l

δ(Λi)δ(Ωk)δ(θl)×

det |{Λi,Ωk}| •(det |{θl1 ,θl2}|)1/2×

exp{i
∫
d4x(παϕ̇α−Hc +

Jαϕα +Kαπα)}. (15)

It is easy to check that det |{Λi,Ωk}|, det |{θl1 ,

θl2}| are independent of the fields, and thus we can

omit them from the generating functional of Green

function, then we have

Z[J,K] =
∫
DϕαDπα

∏
i,k,l

δ(Λi)δ(Ωk)δ(θl)×

exp{i
∫
d4x(Leff +Jαϕα +Kαπα)}. (16)

Using the property of δ function

δ(Λα)=
∫

duα

2π
exp(iuαΛα). (17)

The generating functional of Green function for this

system is now deduced as follows

Z[J,K] =
∫
DϕαDπαDuiDvjDwk×

exp{i
∫
d4x(Leff +Jαϕα +Kαπα)}, (18)

where

Leff = Lp +Lm, (19)

LP = πaϕ
a−Hc, (20)

Lm = uiΛi +vjΩj +ωkθk, (21)

ϕα =(Aµ,λ,λ,B1,B2,B
∗
1 ,B∗

2 ,ψ1,ψ2,ψ1,ψ2,ui,vj ,wk),

(22)

πα =(πµ,πλ,πλ,πB1 ,πB∗1 ,πB2 ,πB∗2 ,πψ1 ,πψ1
,πψ2 ,πψ2

),

(23)

Jα =(Jµ,Jλ,Jλ,JB1 ,JB2 ,JB∗1 ,JB∗2 ,Jψ1 ,Jψ2 ,

Jψ1
,Jψ2

,Jui
,Jvi

,Jwi
), (24)

Kβ =(Kµ,Kλ,Kλ,KB1 ,KB2 ,KB∗1 ,KB∗2 ,Kψ1 ,Kψ2 ,

Kψ1
,Kψ2

), (25)

where ui,vj ,ωk are the multiplier fields, and exterior

sources Jui
,Jvj

,Jwk
corresponding to the multiplier

fields are induced.

5 Summary and conclusion

Based on the constrained Hamilton theory, we

obtain the constraints in the singular SQED sys-

tem in phase space, two first-class and six secondary

constraints are obtained through combining the pri-

mary and secondary constraints. Using spinor elec-

trodynamics, Ref. [12] rigorously proved that the sec-

ondary constraints act as independent generators of

gauge transformations (Dirac conjecture) for the sys-

tem possessing only the first-class constraints, spinor

field ψ has the conjugate momentum πψ = iψγ0, but it

is not considered as a constraint, and πψ is not intro-

duced as the conjugate momentum of ψ in Ref. [12].

We find that the secondary constraint (9) is the elec-

tric charge conversation law of supersymmetry spinor

electrodynamics. On the other hand, we may also use

Faddeev-Jackiw quantization method[13] to quantize

the supersymmetrical electrodynamic system.

According to Castellani’s method to construct

generator of gauge transformations[10], we get the

generator of the gauge transformtions, and the gauge

transformations of the component fields.

Using path integral quantization for canonical
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constrained system in Faddeev-Senjanovic scheme,

and considering Coulomb gauge and its consistent

equation to fix gauge, we quantize the supersymmet-

rical electrodynamic system, and get the generating

functional of Green function for this system. Further-

more, we can obtain the canonical Ward identities for

the system with the generating functional of Green

function.
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超对称电动力学系统的Faddeev-Senjanovic量子化
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摘要 用Faddeev-Senjanovic量子化方法对超对称电动力学系统在一般情况下进行了量子化, 得到了格林函数

的生成泛函. 通过对一些约束作线性组合获得了另一个第一类约束, 构造出了该体系的规范生成元, 导出了该系

统的规范不变的对称变换. 由一个规范条件的自恰性导出了另一个规范条件, 发现超对称电动力学系统的次级

第一类约束对应物理电荷守恒律, 从而使过去要算很多次级约束才能截断的约束自然截断, 因而使超对称电动

力学系统在一般情况下的Faddeev-Senjanovic量子化被简化.

关键词 超对称 量子电动力学 Faddeev-Senjanovic量子化 Dirac-Bergmman算法
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