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Abstract The pairwise entanglement of the Heisenberg XX chain with next-nearest-neighbor (NNN) interac-

tions was investigated by using the concurrence measure. The results show that for the nearest-neighbor sites,

the entanglement may be improved or suppressed depending on the magnitudes of the NNN coupling constant

J , while for the next-nearest-neighbor sites, it always increases with the increase of |J |. The critical tempera-

ture Tc decreases with the increase of J for the nearest-neighbor entanglement and increases with the increase

of |J | for the next-nearest-neighbor entanglement, respectively. We also show that the general Heisenberg XX

model still can be used to create the entangled W states of three and four qubits, and that the presence of

NNN coupling has no effect on the creation of four-qubit W states, while it shifts the instant of time at which

the three-qubit W states are created.

Key words Heisenberg XX chain, next-nearest-neighbor interaction, thermal entanglement

1 Introduction

Entanglement is a unique quantum property

that does not exist classically. It has attracted

much attention in recent years due to its central

role in quantum communication[1, 2] and informa-

tion processing[3], such as quantum teleportation[1],

superdense coding[4], quantum cryptographic key

distribution[2], etc. Particularly, in the field

of condensed-matter physics, the entanglement

of the quantum spin systems was intensively

investigated[5—13] with the measure of the entangle-

ment formation, namely, the concurrence C (see be-

low). However, as far as we know, most discussions

mentioned above merely focused on the models with

the nearest-neighbor (NN) interactions, and the next-

nearest-neighbor (NNN) interaction has seldom been

taken into account. In fact, there are some quasi-

one-dimensional and two-dimensional antiferromag-

netic (AFM)[14] spin models that manifest such inter-

actions. Therefore, it is worthwhile to include these

interactions in the studies of spin chain entanglement.

In this paper, we study pairwise entanglement be-

tween the nearest neighbors and that between the

next-nearest neighbors in a spin-1/2 antiferromag-

netic Heisenberg XX chain with the nearest-neighbor

coupling constant J1 and the next-nearest-neighbor

coupling constant J2. We quantify it by means of the

concurrence[15, 16], which is defined as C=max{λ1−
λ2−λ3−λ4,0}, where the λi’s are the square roots

of the eigenvalues of the product matrix R = ρij ρ̃ij

in the decreasing order. The spin-flipped density ma-

trix is defined by ρ̃ij = (σy
i ⊗ σy

j )ρ∗ij(σ
y
i ⊗ σy

j ). For

a system with temperature T at thermal equilib-

rium, the density matrix is characterized by ρ(T ) =

Z−1 exp(−Ĥ/kBT ), where Z =Tr[exp(−Ĥ/kBT )] is
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the partition function and kB is the Boltzmann’s con-

stant and has been set to 1 hereafter. The reduced

density matrix ρij is obtained by tracing out all other

qubits from ρ(T ).

2 General formalism

The Hamiltonian for the spin-1/2 Heisenberg XX

chain we studied in this paper is described by

Ĥ =
N∑

n=1

(σx
nσx

n+1 +σy
nσy

n+1)+

J

N∑
n=1

(σx
nσx

n+2 +σy
nσy

n+2). (1)

where we have set the NN coupling constant J1 to

1 and the NNN coupling constant J2 to J for rea-

son of succinct presentation. The periodic boundary

condition is imposed, so that N +1 ≡ 1, N +2 ≡ 2.

The topology of the chain being studied is illustrated

in Fig. 1, which can also be considered a two-chain

lattice with diagonal, or “zigzag” couplings.

Fig. 1. Schematic picture of the zigzag spin chain.

The model we studied has the symmetry of trans-

lational invariance, and also it is easy to check that

the commutator [Ĥ, Sz]=0 (rotation symmetry about

the z-axis); all these guarantee that the reduced den-

sity matrix for the subspace of any two spins has the

form

ρij =




u+ 0 0 0

0 ω z 0

0 z ω 0

0 0 0 u−




, (2)

in the standard basis {|00〉, |01〉, |10〉, |11〉}. Here

Sz =
∑N

i=1
(σz

i /2) are the collective spin operators.

The elements of the reduced density matrix (2) are

related to various correlation functions Gαβ = 〈σα
i σβ

j 〉
(α, β = x, y, z) and the magnetization per site

M̄ = 〈∑N

i=1
σz

i 〉/N as

u± =
1
4
(1+Gzz±2M̄)

z =
1
4
(Gxx +Gyy)

, (3)

The fact [Ĥ, Sz]=0 guarantees that Gxx = Gyy,

so the corresponding concurrence quantifying the en-

tanglement of arbitrary two spins is readily obtained

as

C =max{|Gxx|− 1
2

√
(1+Gzz)2−4M̄2,0}. (4)

3 Entanglement of the ground states

3.1 Ground-state entanglement

To observe the effects of the next-nearest- neigh-

bor (NNN) exchange interactions on the entangle-

ment of the ground states, we give our numerical

simulation results as follows. We first consider the

case of the nearest-neighbor entanglement, which

is plotted as a function of J for N=6,7,· · · ,10 in

Fig. 2(a). Apparently, with the increasing value

of J , the concurrence Cn (the subscript n denotes

the nearest-neighbor entanglement) firstly increases

monotonously and arrives at a certain maximum

value, then decays off gradually and drops to zero sud-

denly when J reaches a critical point Jc. The singu-

larities are mainly caused by the energy level-crossing

at these points. Also one can find from Fig. 2(a) that

for any number N , the frustrated NNN exchange in-

teractions can be used to enhance the entanglement

between the nearest-neighbor sites at some special pa-

rameter regions of J , which implies that the presence

of interactions with a third party does not always

suppress the entanglement between the original bi-

parties; sometimes it may improve the entanglement.

Moreover, we note that the curves for entanglement

in the case of even and odd N converge rapidly as

N increases, which can be understood from the fact

that for large N , it should not make a difference to

the nearest-neighbor entanglement whether we add

or subtract a qubit somewhere far along the chain.

For entanglement of the next-nearest-neighbor

sites, as can be seen from Fig. 2(b), there is no en-

tanglement if |J | is below some certain values, which
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means a weak NNN exchange interaction still can-

not induce entanglement between the next-nearest-

neighbor sites. However, if the frustrated NNN ex-

change interaction is strong enough, the entanglement

may be enhanced with the increase of |J | except the

case of N=6.

Fig. 2. Concurrence versus the next-nearest-

neighbor coupling constant J at zero absolute

temperature. (a) entanglement of the nearest-

neighbor spins; (b) entanglement of the next-

nearest-neighbor spins.

3.2 Generation of the entangled W states

The Heisenberg XX model with only the

nearest-neighbor exchange interactions can be used

to generate the entangled W states of the

form |WN〉=(1/
√

N)(eiθ1 |100 · · ·0〉 + eiθ2 |010 · · ·0〉 +

eiθ3 |001 · · ·0〉+ · · ·+eiθN |000 · · ·1〉) for three and four

qubits[5]. However, when the frustrated next-nearest-

neighbor interaction is present, can such states still

be generated, or do the NNN interactions have any

effect on the generation of the so-called W states?

In order to see this explicitly, let us first rewrite the

Hamiltonian (1) as

Ĥ = 2
[ N∑

n=1

(σ+
n σ−n+1 +σ+

n+1σ
−
n )+

J
N∑

n=1

(σ+
n σ−n+2 +σ+

n+2σ
−
n )

]
. (5)

where σ± = (σx± iσy)/2 are the raising and lowering

operators, respectively.

Then if we prepare the initial state of the system

with the first spin pointing up and all other spins

pointing down (i.e., the initial state of the system is

σ+
1 |0〉⊗N), following the procedures of Ref. [5], the

state vector at time t is easily obtained as

|Ψ(t)〉=
N∑

n=1

bn(t)σ+
n |0〉⊗N , (6)

where

bn(t) =
1
N

N∑
k=1

exp
[
i
2k(n−1)π

N
−

it
(

cos
2kπ

N
+J cos

4kπ

N

)]
. (7)

From Eq. (7), the probability at time t for state

σ+
n |0〉⊗N is obtained as

p(n,N,t)= |bn(t)|2 , (8)

For the case of N=3 and N=4, after a straight-

forward calculation, the expressions of p(n,N,t) are

given by

p(1,3, t)=
1
9
[5+4cos(6+6J)t]

p(2,3, t)= p(3,3, t)=
1
9
[2−2cos(6+6J)t]

, (9)

and

p(1,4, t)= cos4(2t)

p(2,4, t)=
1
4

sin2(4t)

p(3,4, t)=
1
4
[1+cos2(4t)−2cos(4t)cos(8Jt)]

p(4,4, t)=
1
4
[1+cos2(4t)−2cos(4t)sin(8Jt)]

. (10)

As everyone knows, in order to generate the so-

called entangled W states, the equality p(n,N,t) =

1/N must be satisfied, which gives the following so-

lutions

tn =
(1+3n)π
9(1+J)

or

tn =
(2+3n)π
9(1+J)

(n =0,1,2, · · · )
, (11)

and

tn =
(1+2n)π

8
(n =0,1,2, · · · ). (12)

for N=3 and 4, respectively.

Apparently, the three-qubit and four-qubit entan-

gled W states can be generated by only one-time evo-

lution of the Heisenberg XX model. However, the

instant of time at which the three-qubit entangled W

states are generated is changed by the presence of the

NNN exchange interactions compared with the case
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that only interacts via the NN interactions, while it

has no effect on the generation of the four-qubit en-

tangled W states.

Further studies show that we can’t generate en-

tangled W states more than four qubits with this

model, no matter whether the frustrated NNN in-

teractions are present or not.

4 Thermal entanglement

Raising the temperature mixed the ground states

with other states, depending on the relative magni-

tudes of the parameters involved, the effects of the

NNN coupling on the pairwise entanglement may be

different. To observe these clearly, we determine the

dependence of the concurrence on the NNN coupling

constant J and the environment temperature T .

We begin by considering the entanglement of the

nearest-neighbor sites, which is plotted as a function

of J and T for N=10 in Fig. 3(a). One can observe

that when the frustrated NNN coupling constant

J >0.7, there is no entanglement at any temperature

T . This indicates that a strong antiferromagnetic

frustrated NNN coupling generally suppresses the

pairwise entanglement between the nearest-neighbor

spins in the Heisenberg XX model. When the NNN

coupling constant J <0.7, at any fixed temperature

T , the concurrence Cn initially increases with the in-

crease of J , and then arrives at a certain maximum

value before it decays off to zero as J reaches a critical

point Jc. And as is shown in Fig. 3(a), Jc decreases

with the increase of the temperature T .

Also it is worthwhile to note that there exists

a threshold temperature Tth (about 0.8 for N=10)

at which the concurrence Cn obtains its maximum

value when J=0. At this critical point, the nearest-

neighbor entanglement is always suppressed when

the NNN exchange interaction is present, while for

T < Tth, it is always suppressed when J <0, and for

T > Tth, it is always suppressed when J >0.

The next-nearest-neighbor entanglement as a

function of J and T for N=10 is shown in Fig. 3(b).

It is clear that the entanglement only occurs when

J < −0.2 or J >0.6, and at these two regions, it

always increases with the increasing value of |J | at

any temperature T . The fact that there is no next-

nearest-neighbor entanglement for −0.2 < J < 0.6

may be regarded as evidence to support the argument

that even the presence of a weak NNN exchange inter-

action still cannot induce entanglement between the

next-nearest-neighbor spins.

Fig. 3 also shows that the concurrence Cn and

Cnn (Cnn denotes the next-nearest-neighbor entangle-

ment) always decrease with the increase of the tem-

perature T , which means the thermal fluctuation usu-

ally suppresses the pairwise entanglement in the one-

dimensional Heisenberg XX model.

Fig. 3. Concurrence versus both next-nearest-

neighbor coupling constant J and temperature

T for N=10. (a) entanglement of the nearest-

neighbor spins; (b) entanglement of the next-

nearest-neighbor spins.

Fig. 4. Critical temperature Tc versus the

next-nearest-neighbor coupling constant J .

(a) entanglement of the nearest-neighbor

spins; (b) entanglement of the next-nearest-

neighbor spins.
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In Fig. 4 we give the dependence of the critical

temperature Tc (above which the entanglement van-

ishes) on the NNN coupling constant J . Clearly, for

entanglement of the nearest neighbors, Tc always de-

creases with the increase of J and drops to zero at the

neighborhood of J=0.65; and there is a cross point

around J=0.2. For entanglement of the next-nearest

neighbors, Tc firstly keeps its constant value of zero,

and then increases with the increase of |J |.

5 Conclusion

In this paper, we investigated the pairwise entan-

glement of the Heisenberg XX model in the presence

of the next-nearest-neighbor exchange interactions.

Through calculating the concurrence of the system,

we show that the nearest-neighbor entanglement may

be enhanced or suppressed depending on the mag-

nitudes of the NNN coupling constant J , while the

next-nearest-neighbor entanglement always increases

with the increase of |J |. The critical temperature Tc

above which the entanglement vanishes is also stud-

ied, and the results show that Tc declines with the

increase of J for entanglement of nearest neighbors,

and rises with the increase of | J | for entanglement

of the next-nearest neighbors.

By solving the XX model, we also show that the

existence of the NNN coupling shifts the instant of

time at which the three-qubit entangled W states are

generated, while it has no effect on the generation of

the four-qubit entangled W states.
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次近邻相互作用对Heisenberg XX链纠缠影响的研究*
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摘要 研究了存在次近邻相互作用 (耦合)时Heisenberg XX链的纠缠特性. 结果表明对近邻格点, 随着耦合常数

J的变化, 次近邻相互作用的存在可能使其纠缠度增大或者减小; 而对次近邻格点, 引进次近邻相互作用却可以

产生纠缠, 并且使其随着 | J |的增大而增大. 近邻格点间纠缠存在的临界温度Tc随着J的增大而降低, 次近邻格

点间纠缠存在的临界温度Tc随着 | J |的增大而升高. 此外对纠缠W态的制备, 次近邻相互作用的存在还使得三

量子位情形时W态产生的时刻改变, 而对于四量子位情形却没有影响.

关键词 Heisenberg XX链 次近邻相互作用 热纠缠
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