Prediction and Formation Mechanism of Triaxial Superdeformed Nuclei for $A \sim 80^{*}$

SHEN Cai－Wan ${ }^{1,2 ; 1)}$ CHEN Yong－Shou ${ }^{3,4}$ TU Ya ${ }^{3}$ YU Shao－Ying ${ }^{1}$ ZHANG Da－Li ${ }^{1}$
1 （School of Science，Huzhou Teachers College，Huzhou 313000，China）
2 （Center of Theoretical Nuclear Physics，National Laboratory of Heavy Ion Accelerator of Lanzhou， Lanzhou 730000，China）
3 （China Institute of Atomic Energy，Beijing 102413，China）
4 （Institute of Theoretical Physics，CAS，Beijing 100080，China）

Abstract

The three dimensional Total Routhian Surface（TRS）calculations are carried out for 64 nuclei in the $70 \leqslant A \leqslant 90$ region to find triaxial superdeformed nuclei．A total of 12 nuclei are predicted to have triaxial superdeformation in which the neutron rotational energy plays a key role and the neutron shell energy plays additional role in the formation of triaxial superdeformed nuclei．

Key words triaxial superdeformation，$A \sim 80$ region，formalism mechanism

1 Introduction

Usually，the shape of a deformed nucleus is sup－ posed to be an ellipsoid with small hexadecapole de－ formation．In the Nilsson model，the frequency of harmonic oscillator is described as

$$
\begin{equation*}
\omega_{\mathrm{k}}=\omega_{0}\left[1-\frac{2}{3} \varepsilon_{2} \cos \left(\gamma+k \frac{2 \pi}{3}\right)\right], \quad k=1,2,3 \tag{1}
\end{equation*}
$$

where ε_{2} is the quadrupole deformation parameter and γ the triaxial deformation parameter．Let the half axis of a nucleus in x, y, z direction be a, b, c ， respectively，then we get the relations between a, b, c and ε_{2}, γ from the condition $a \omega_{1}=b \omega_{2}=c \omega_{3}$ ：

$$
\begin{align*}
\varepsilon_{2} & =\frac{\sqrt{9(b c+a c-2 a b)^{2}+27(b c-a c)^{2}}}{2(a b+a c+b c)} \tag{2}\\
\gamma & =\arctan \left(\frac{\sqrt{3}(b-a)}{a+b-2 a b / c}\right) \tag{3}
\end{align*}
$$

and

[^0]in $\mathrm{Lu}, \mathrm{Hf}, \mathrm{Ta}$ ，Er and $\mathrm{Zr}^{[1-8]}$ ．Among the discovered TSD nuclei，most of them are located in the $A \sim 160$ region，and only one nucleus is in the $A \sim 80$ region． The triaxial behavior of ${ }^{163} \mathrm{Lu}$ has been further con－ firmed experimentally by the discovery of the wob－ bling mode ${ }^{[9]}$ ．However，one is not able to get the size of the triaxiality from this mode，and a theo－ retical model is still needed to get more information on this aspect．The triaxial superdeformed nuclei in the $A \sim 160$ region has been predicted ${ }^{[10]}$ ．From that work triaxial superdeformation for proton configura－ tion［660］ $1 / 2$ in several other nuclei，besides the four discovered ones，were predicted．It is also pointed out that the shapes may co－exist for other certain configu－ rations and a nucleus may have triaxial superdefor－ mation in different quasi－particle configurations．

The TSD nucleus in $A \sim 80,{ }^{86} \mathrm{Zr}$ ，was discov－ ered in 1998．TSD ${ }^{86} \mathrm{Zr}$ seems not to be an acci－ dent appearing in the $A \sim 80$ region．Other TSD nuclei must also exist in this region．In this paper， we attempt to predict the TSD nuclei near $A \sim 80$ by TRS（Total Routhian Surface）calculations and to give the corresponding formation mechanism．In Sect． 2 a brief description of the three－dimensional TRS theory，which is used to determine the nuclear deformation，is included．The prediction of TSD nu－ clei in the $A \sim 80$ region is presented in Sect．3．The discussion of the formation mechanism of TSD nuclei is devoted in Sect． 4 and in Sect． 5 the summary is given．

2 A brief description of the TRS model

The Hamiltonian of quasi－particles moving in a quadrupole deformed potential rotating around the x－axis with a frequency ω can be written as

$$
\begin{equation*}
H^{\omega}=H_{\mathrm{s} . \mathrm{p} .}\left(\varepsilon_{2}, \varepsilon_{4}, \gamma\right)-\lambda N+\Delta\left(P+P^{+}\right)-\omega J_{x} \tag{5}
\end{equation*}
$$

where $H_{\text {s．p．}}$ denotes the deformed Hamiltonian of sin－ gle particle motion，the second term on the right hand side is the chemical potential，the third term is the pairing interaction and the last term stands for the Coriolis forces．The modified－harmonic－oscillator
（MHO）potential with the parameters κ and μ for the mass region taken from Ref．［11］is employed in the present calculation．The pairing－gap parameter is determined empirically by $\Delta=0.9 \Delta_{\text {o．e．，}}$ ，and $\Delta_{\text {o．e．}}$ is taken from experimental odd－even mass difference ${ }^{[12]}$ ． As an approximation，we did not take into account the deformation and rotation dependence of pairing．

The total routhian surface，namely，the total en－ ergy in the rotating frame as a function of ε_{2}, γ ，and ε_{4} ，of a (Z, N) nucleus for a fixed quasi－particle con－ figuration c．f．can be calculated by

$$
\begin{align*}
E^{\text {c.f. }}\left(\varepsilon_{2}, \varepsilon_{4}, \gamma ; \omega\right)= & E_{\mathrm{ld}}\left(\varepsilon_{2}, \varepsilon_{4}, \gamma\right)+ \\
& E_{\mathrm{corr}}\left(\varepsilon_{2}, \varepsilon_{4}, \gamma ; \omega=0\right)+ \\
& E_{\mathrm{rot}}\left(\varepsilon_{2}, \varepsilon_{4}, \gamma ; \omega\right)+ \\
& \sum_{i \in \text { c.f. }} \mathrm{e}_{i}^{\omega}\left(\varepsilon_{2}, \varepsilon_{4}, \gamma\right), \tag{6}
\end{align*}
$$

where $E_{\text {ld }}$ is the liquid－drop model energy ${ }^{[13]}, E_{\text {corr }}$ is the quantum－effect correction to the energy，which includes both the shell ${ }^{[14]}$ and pairing corrections ${ }^{[15]}$ ． The collective rotational energy $E_{\text {rot }}$ can be micro－ scopically calculated as the energy difference between the expectation values of H^{ω} with and without ro－ tation，by using the wave function for the quasi－ particle vacuum configuration ${ }^{[16]}$ ．The last term of Eq．（2）is the sum of quasi－particle energies belong－ ing to the configuration c．f．，which generates the de－ formation drive．All of the terms in Eq．（2）de－ pend on (Z, N) numbers which are not written ex－ plicitly．The equilibrium deformations of nucleus are calculated by minimizing the total routhian energy of Eq．（2）with respect to $\varepsilon_{2}, \varepsilon_{4}$ ，and γ ．Here we take the hexadicupole deformation ε_{4} as a free parameter in order to get better results．

In the real process of minimizing the total routhian，we minimize the total routhian as a func－ tion of ε_{4} for each point $\left(\varepsilon_{2}, \gamma\right)$ and get two surfaces $E^{\text {c．f．}}\left(\varepsilon_{2}, \gamma\right)$ and $\varepsilon_{4}\left(\varepsilon_{2}, \gamma\right)$ first．Then from the surface of $E^{\text {c．f．}}\left(\varepsilon_{2}, \gamma\right)$ we can find the minimum $E_{\min }^{\text {c．f．}}$ and cor－ responding $\varepsilon_{2 \text { min }}$ and $\gamma_{\text {min }}$ ．From $\varepsilon_{4}\left(\varepsilon_{2}, \gamma\right), \varepsilon_{2 \text { min }}$ and $\gamma_{\text {min }}$ ，we can determine the value of $\varepsilon_{4 \text { min }}$ ．Based on above steps，we can find the equilibrium deforma－ tions $\varepsilon_{2 \text { min }}, \varepsilon_{4 \text { min }}$ and $\gamma_{\text {min }}$ which possibly exist in the
nucleus．

3 The prediction of the triaxial su－ perdeformed nuclei

Before calculating $A \sim 80$ nuclei，the TRS method is checked and compared with the discovered TSD nucleus，${ }^{86} \mathrm{Zr}$ ．Our calculated result，$\left(\varepsilon_{2}, \gamma\right)=(0.455$ ， 16．8），is very coincidental with the result in Ref．［8］， indicating the reliability of the method for the calcu－ lation in the $A \sim 80$ mass region．

In the following，the progress used to determine the deformation of a nucleus will be described in de－ tail with the example of ${ }^{80} \mathrm{Kr}$ ．From the fact that the γ－ray energy within a superdeformed band in $A \sim 80$ is much higher than that in $A \sim 160$ ，we get that the superdeformed nuclei in $A \sim 80$ rotate much faster than those in $A \sim 160$ because the rota－ tional frequency，ω ，is approximately half the γ－ray energy．Thus，when we predict the shape of a nu－ cleus in $A \sim 80$ ，the ω must be larger．In this paper， we fixed the ω as $0.1 \omega_{0}$ ，where $\omega_{0}=41 / \sqrt[3]{A} \mathrm{MeV}$ ．In the three－dimensional calculation，ε_{4} from -0.04 to 0.10 is divided into 11 points．The total routhian energy in each $\left(\varepsilon_{2} \cos \left(\gamma+30^{\circ}\right), \varepsilon_{2} \sin \left(\gamma+30^{\circ}\right)\right)$ point will be minimized with respect to the correspond－ ing 11 points．Fig．1（a）shows a contour plot of the total routhian surface in which each point cor－ responds to the same ω but different ε_{4} ．In Fig．1（a）， there is a local minimum marked by＂＋＂which has the deformation $\left(\varepsilon_{2}, \gamma\right)=\left(0.393,28.8^{\circ}\right)$ ．The hexade－ cupole parameter ε_{4} ，corresponding to the local min－ imum in Fig．1（a），is determined by Fig．1（b）which is the counter plot of ε_{4} ．The value of ε_{4} in each grid point in Fig．1（b）is got from the minimization of the total routhian against ε_{4} ．The symbol＂＋＂ point in Fig．1（b），which corresponds to the mini－ mum in Fig．1（a），has a value of $\varepsilon_{4} 0.030$ ．Thus， the deformation of ${ }^{80} \mathrm{Kr}$ at $\omega=0.1 \omega_{0}$ is determined as $\left(\varepsilon_{2}, \gamma, \varepsilon_{4}\right)=\left(0.393,28.8^{\circ}, 0.030\right)$ ．During the calcu－ lation，we do not add the quasi－particle energy（the last item in Eq．（6））to the total routhian energy，be－ cause at such a high rotational frequency，one or two pairs of particles are broken and their contributions
are automatically included as a part of the the rota－ tional energy（see Sect． 4 for details）．

Fig．1．The shape determination of ${ }^{80} \mathrm{Kr}$ ． （a）The counter plot of total routhian．The unit of the number in the surface is MeV ．＂+ ＂ indicates a local minimum whose deformation is $\left(\varepsilon_{2}, \gamma\right)=\left(0.393,28.8^{\circ}\right)$ ；（b）The counter plot of ε_{4} ．The hexadecupole deformation at sym－ bol＂+ ＂，which has the same position as＂+ ＂ in（a），is 0.030 ．

Following the step described above，we analyzed all of the β stable even－even nuclei in the $70 \leqslant A \leqslant 90$ region，totally 64 nuclei．The predicted TSD nuclei are listed in Table 1．In this paper，we call the defor－ mation with $\varepsilon_{2}>0.35$ and $10^{\circ} \leqslant \gamma \leqslant 50^{\circ}$ as triaxial superdeformation．So，in Table 1，only the TSD nu－ clei under the deformation condition，$\varepsilon_{2}>0.35$ and $10^{\circ} \leqslant \gamma \leqslant 50^{\circ}$ ，are listed．

Table 1．Predicted TSD nuclei in the $70 \leqslant A \leqslant 90$ region for rotational frequency of $0.1 \hbar \omega_{0}$ and conditions of $\varepsilon_{2}>0.35$ and $10^{\circ} \leqslant \gamma \leqslant 50^{\circ}$ ．

nucleus	ε_{2}	γ	ε_{4}	nucleus	ε_{2}	γ	ε_{4}
${ }^{72} \mathrm{Ni}$	0.448	12.6°	0.048	${ }^{80} \mathrm{Kr}$	0.394	28.6°	0.030
${ }^{74} \mathrm{Ni}$	0.393	21.3°	0.023	${ }^{86} \mathrm{Zr}$	0.471	19.0°	0.043
${ }^{76} \mathrm{Zn}$	0.404	21.3°	0.029	${ }^{88} \mathrm{Mo}$	0.500	14.7°	0.055
${ }^{76} \mathrm{Ge}$	0.403	30.7°	0.027	${ }^{90} \mathrm{Mo}$	0.375	40.0°	0.037
${ }^{78} \mathrm{Se}$	0.396	32.7°	0.027	${ }^{90} \mathrm{Ru}$	0.483	23.1°	0.045
${ }^{80} \mathrm{Se}$	0.351	36.1°	0.022				

The location of the predicted nuclei among the nuclei in the $70 \leqslant A \leqslant 90$ region is shown in Fig．2．In this figure，solid circles represent the predicted TSD nuclei，open circles axial SD nuclei，cross symbols the nuclei in which we did not find superdeforma－ tion．Obviously，regular in this figure is that when $N=42,44,46$ ，most of the nuclei have superdefor－ mation．Especially，for nuclei of $N=44,46$ ，most of them have triaxial superdeformation．Apparently， the neutron properties control the formation of axial
superdeformation and triaxial superdeformation． How and why do the neutron properties control the formation mechanism of TSD nuclei？

4 Formation mechanism of TSD nuclei

$$
\text { in } A \sim 80
$$

In Fig．2，it is obvious that the neutron numbers of the most predicted TSD nuclei are 44 and 46 ．Only ${ }^{90} \mathrm{Mo}$ is an exception．This phenomenon indicates that the neutron property governs the formation of TSD nuclei．

Fig．2．The prediction of triaxial superdeform－ ed nuclei．
The solid circle，open circle and cross rep－ resent the predicted triaxial，axial，non－ superdeformed nuclei，respectively．It is shown that most of the predicted TSD nuclei are located in $N=44,46$ ．

In order to discuss the mechanism in detail，the ${ }^{80} \mathrm{Kr}$ ，predicted to have triaxial superdeformation，is selected．According to the Eq．（6），most parts of the total routhian energy，$E_{\text {rot }}, E_{\text {shell }}, E_{\text {pair }}$ and $E_{\text {sum }}(=$ $E_{\text {rot }}+E_{\text {shell }}+E_{\text {pair }}$ ），are plotted in Fig．3．Fig．3（a） and Fig．3（b）show the TRS elements of proton and neutron in ${ }^{80} \mathrm{Kr}$ ，respectively．The energy scale of the contour lines is 0.28 MeV ．

In Fig．3（a1），the surface of proton rotational energy is flat and the deformation of the local minimum is small．Therefore，the proton rotating energy cannot affect the formation of TSD shape． In Fig．3（a2），although the proton shell correction energy has two deep minimums，the proton pairing correction energy，shown in Fig．3（a3），has two high peeks near the minimum in Fig．3（a2）and canceled
the minimum of shell correction energy．The sum of the three types of energy，$E_{\text {sum }(p)}$ ，shown in Fig．3（a4）， is flat in the central part of the surface．This means that the proton properties in ${ }^{80} \mathrm{Kr}$ are helpless to form TSD nuclei．

Fig．3．The formation mechanism of ${ }^{80} \mathrm{Kr}$ ．
（a）and（b）are for protons and neutrons，re－ spectively．（a1），（b1）are for rotating energy， （a2），（b2）for shell correction energy，（a3）， （b3）for pairing energy，（a4），（b4）are the sum of the previous three items．It is shown that neutron rotating energy plays a key role in the formation of the predicted TSD ${ }^{80} \mathrm{Kr}$ ．See text for details．

However，the neutron properties，shown in Fig． 3（b），are different from Fig．3（a）．The neutron rota－ tional energy，shown in Fig．3（b1）decreases sharply with increasing large ε_{2} deformation and therefore has a strong driving effect towards large elongation deformation．In Fig．3（b2），the neutron shell correc－ tion has two minimums but they are canceled by the
pairing energy shown in Fig．3（b3）．Thus，the driv－ ing force in large quadrupole deformation remains． Summing the three neutron parts of the total routhian energy，$E_{\text {sum }(n)}$ ，we obtain Fig．3（b4）．This figure is much similar to Fig．3（b1），having small driv－ ing effect to spherical deformation and large driving effect to large quadrupole deformation．This is very important for ${ }^{80} \mathrm{Kr}$ to form TSD shape．Fig． 4 shows the sum of liquid drop energy and $E_{\text {sum }(n)}$ ．A large quadrupole and triaxial minimum appear on this sur－ face．Since $E_{\text {sum（p）}}$ is flat in this region，the minimum shown in Fig． 4 exists also in the total routhian sur－ face，see Fig．1．In the formation of TSD shape，the rotational energy plays a crucial role．Because the neutron shell correction energy also decreases sharply in large deformation，it also has an additional role to form TSD shape．

Fig．4．The counter plot of the sum of liquid drop energy，neutron rotating energy，shell correction energy and pair correction energy． This plot shows the local minimum marked by＂＋＂which is close to the local minimum in Fig．1（a）．

To confirm that the reason is also effective for other nuclei in the $A \sim 80$ region，we analyze ${ }^{78} \mathrm{Se}$ which is predicted to have TSD shape and ${ }^{86} \mathrm{Kr}$ which is predicted to have no TSD shape as well．The results support our analysis for the formation mechanism of TSD nuclei that the rotational energy plays a key role and neutron shell energy plays an additional role in the formation of TSD nuclei．

It has been pointed out that the rotational energy is the difference between the expectation value of H^{ω}
（Eq．（5））with and without rotation．When the rota－ tional frequency is high，the pairing of protons and／or neutrons will be broken and their angular momentum alignment will affect the rotational energy．In order to see the broken pair of protons and neutrons，the calculated quasi－particle routhians are presented in Fig．5（a）for protons and Fig．5（b）for neutrons．In Fig．5（a），［431］3／2 orbit crosses over the［440］1／2 or－ bit at $\omega=0.082 \hbar \omega_{0}$ for protons，while in Fig．5（b）， ［420］1／2 orbit crosses over the［413］7／2 orbit for both $\alpha= \pm 1 / 2$ at $\omega=0.09 \hbar \omega_{0}$ for neutrons．Therefore， When ${ }^{80} \mathrm{Kr}$ rotates with $\omega=0.10 \hbar \omega_{0}$ ，one proton pair and two neutron pairs are broken and this will take effect on the rotational energy．

Fig．5．The quasi－particle energy for protons （a）and neutrons（b）in ${ }^{80} \mathrm{Kr}$ ．The following convection is used：solid lines：$(\pi=+, \alpha=$ $\left.+\frac{1}{2}\right)$ ，dotted lines：$\left(\pi=+, \alpha=-\frac{1}{2}\right)$ ，dash－ dotted lines：$\left(\pi=-, \alpha=+\frac{1}{2}\right)$ and dashed lines：$\left(\pi=-, \alpha=-\frac{1}{2}\right)$ ．

Compared with the analysis of TSD nuclei in the $A \sim 160$ region，the quadrupole deformation parame－ ters of the predicted TSD nuclei in the $A \sim 80$ region are larger than those in the $A \sim 160$ region．And also，the formation mechanism is different between the two regions．In the $A \sim 160$ region，the neu－ tron shell correction energy controls the formation of TSD nuclei，while in the $A \sim 80$ region，the rotating energy，which includes the effect of quasi－particle an－ gular momentum alignments，controls the formation of TSD nuclei．

5 Summary

In summary，by fixing the rotational frequency ω at $0.1 \hbar \omega_{0}$ ，we predict that 11 nuclei have triaxial
superdeformation under the condition of $\varepsilon_{2} \geqslant 0.35$ and $10^{\circ} \leqslant \gamma \leqslant 50^{\circ}$ by the three dimensional TRS cal－ culation in the $A \sim 80$ region．Most of these TSD nu－ clei are located in the $N=44,46$ region，only ${ }^{90} \mathrm{Mo}$ is an exception．By analyzing the formation mechanism
of TSD nuclei in the $A \sim 80$ region，we find that the neutron rotational energy which includes the contri－ bution of quasiparticle angular momentum alignment plays a key role to form TSD nuclei and the neutron shell energy plays an additional role．

References

1 WU X G，YANG C X，ZHENG H et al．Chin．Phys．Lett．， 1997，14： 17
2 YANG C X，WU X G，ZHENG H et al．Phys．J．，1998，A1： 237
3 Törmänen S，Ødegård S W，Hagemann G B et al．Phys． Lett．，1999，B454： 8
4 Bringel P，Hubel H，Amro H et al．Eur．Phys．J．，2003， A16： 155
5 Neusser A，Bhattachary S，Hagemann G B et al．Eur．Phys． J．，2002，A15： 439
6 Amro H，Varmette P G，MA W C et al．Phys．Lett．，2001， B506： 39
7 Djongolov M K，Hartley D J，Riedinger L L et al．Phys． Lett．，2003，B560： 24

8 Sarantites D G，LaFosse D R，Devlin M et al．Phys．Rev．， 1998，C57：R1
9 Ødegård S W，Hagemann G B，Jensen D R et al．Phys． Rev．Lett．，2001，86： 5866
10 SHEN Cai－Wan，CHEN Y S，ZHAO E G．Chin．Phys．Lett．， 2000，17： 488
11 Ragnarsson I，Sheline R K．Phys．Scr．，1984，29： 385
12 Wapstra A H，Audi G．Nucl．Phys．，1985，A432： 1
13 Myers W D，Swiatecki W．Ark．Fys．，1967，361： 343
14 Strutinsky V M．Nucl．Phys．，1968，A122：1；1967，A95： 420
15 Wyss R，Nyberg J，Johnson A et al．Phys．Lett．，1988， B215： 211
16 CHEN Y S，Fraundorf S，Riedinger L L．Phys．Lett．，1986， B171： 7

$A \sim 80$ 核区三轴超形变的预言及形成机制＊

沈彩万 ${ }^{1,2 ; 1)}$ 陈永寿 ${ }^{3,4}$ 图雅 ${ }^{3}$ 于少英 ${ }^{1}$ 张大力 ${ }^{1}$
1 （湖州师范学院理学院 湖州 313000）
2 （兰州重离子加速器国家实验室原子核理论中心 兰州 730000）
3 （中国原子能科学研究院 北京 102413）
4 （中国科学院理论物理研究所 北京 100080）

Abstract

摘要 利用三维总位能面方法，对 $A \sim 80$ 核区的 64 个原子核作了三轴超形变的存在性研究。经过计算，从中找到了 12 个原子核可能存在三轴超形变。研究发现，原子核中的中子转动能对三轴超形变的形成起主要作用，中子壳修正对其形成也有一定的影响。

关键词 三轴超形变 $A \sim 80$ 核区 形成机制

[^1]
[^0]: Received 21 January 2005，Revised 30 March 2005
 ＊Supported by National Natural Science Foundation of China（10235020，10305019，10475115，10475026），Natural Science Foundation of Zhejiang Province（Y604027）and Chinese Academy of Science Knowledge Innovation Project（KJCX1－N11）

 1）E－mail：cwshen＠iris．ciae．ac．cn

[^1]: 2005－01－21 收稿，2005－03－30 收修改稿
 ＊国家自然科学基金（10235020，10305019，10475115，10475026），浙江省自然科学基金（Y604027）和中国科学院知识创新工程重点方向性项目（KJCX1－N11）资助

 1）E－mail：cwshen＠iris．ciae．ac．cn

