^{164—182}**Hf**核的低能谱和电磁跃迁的 相互作用玻色子模型^{*}

范体贵1) 吕立君 张进富

(赤峰学院物理系 赤峰 024001)

摘要 采用相互作用玻色子模型研究了^{164—182}Hf 偶偶核的低能谱和电磁跃迁,应用一个U(5)→ SU(3)简化哈密顿量很好的描述它们的低能谱和电磁跃迁过渡.结果表明^{164—182}Hf 同位素核基本上 属于 $U(5) \rightarrow SU(3)$ 的过渡核.

关键词 能谱 电磁跃迁 低能正宇称集体态

1 引言

Hf核实验资料较为丰富,核素结构较为复杂,是 核物理领域中研究的典型对象. 人们常以Hf核为例 来验证各种模型及各种微观理论方案的正确性. 如 石筑一等从壳模型组态及核子-核子有效相互作用 出发,提出了一种在截断的态空间中研究偶--偶核高 自旋态的理论方案^[1, 2],并用这一微观理论方案给出 了¹⁶⁶Hf, ¹⁶⁸Hf低能激发的计算结果, 表明该理论方 案能很好的描述稀土区偶--偶核高自旋态的性质. 龚 伦训等用处理推转壳模型的粒子数守恒(PNC)方法 分析了稀土变形核172-174Hf的基带和低激发高K带 的运动学转动惯量 j⁽¹⁾ 随角频率的变化及其微观机 制,特别是被拆散核子的Pauli堵塞效应^[3,4].相互 作用玻色子模型(IBM)在处理中、重偶--偶核的集 体运动性质方面非常有效. 我们采用相互作用玻 色子模型, 应用一个 $U(5) \rightarrow SU(3)$ 简化哈密顿量 对^{164—182}Hf 偶-偶核的低能谱和电磁跃迁作了较为系 统的计算,结果表明¹⁶⁴⁻¹⁸²Hf基本处于振动到转动区 域, 是 $U(5) \rightarrow SU(3)$ 的过渡核.

2 哈密顿量

IBM普适哈密顿量包括7项,我们的计算采用如下

多极展开形式的简化哈密量.

$$\hat{H} = \varepsilon_d \hat{n}_d + K\hat{Q} \cdot \hat{Q} + K_L \hat{L} \cdot \hat{L},$$

其中

$$\hat{Q}_{\mu} = (\hat{s}^{+}\hat{\vec{d}} + \hat{d}^{+}\hat{s})^{2} + \chi(\hat{d}^{+}\hat{\vec{d}})^{2}_{\mu},$$
$$\hat{L}_{q} = \sqrt{10}(\hat{d}^{+}\hat{\vec{d}})^{(1)}_{q}, \quad \chi = -\sqrt{7}/2.$$

上述符号的意义与通常的IBM文献相同. 哈密顿 量包括3项, 第一项是单粒子能量, 第二项是电四极 相互作用, 第三项是单极相互作用. ϵ_a , K, K_L 是反应各项作用强度的参数, 上述哈密顿量中 如果 $\epsilon_a = 0$, 此哈密顿简化为SU(3)哈密顿量; 如 果K = 0, 则它成为描述集体振动的U(5)哈密顿量. $K_L(\hat{L} \cdot \hat{L})$ 项只是对L能级的一个修正项, 所以当 给定系统的玻色子数, 上述哈密顿主要由两个参 数 ϵ_a 和K决定, 因此 k/ϵ_a 决定了U(5)到SU(3)的变 化趋势. $k/\epsilon_a = 0$ 和 $k/\epsilon_a = \infty$ 分别对应于振动和转动 极限, 一般情况下, 为介于两者的过渡区.在实际计算 中, 这些参数是可调的,使得能谱的理论值和实验值趋 于一致.

3 计算结果和讨论

表1列出了^{164—182}Hf 同位素核哈密顿量中的有关 参数. 由表1可知所有核的参数变化比较平滑, ε_a 随着

^{*} 国家自然科学基金(10047001, 10265001)和内蒙古教育厅重大项目基金(ZD01038)资助

¹⁾ E-mail: fantigui@sina.com

中子数的增加而减小,而*K*值都很小. ε_a 大的能谱更接近振动极限,而 ε_a 小的能谱更接近转动极限,这反映了Hf同位素核激发态的能量变化及核的形状共存特点.另外 e_2 参数的变化也很小.运用这些参数计算了每个核的能级和电四极跃迁值.

表 1	计算能谱和电四极跃迁的参数值

nucleus	$\varepsilon_d/{\rm MeV}$	K/MeV	$K_L/{ m MeV}$	e_2/eb
164 Hf	0.475	-0.012	0.006	0.1160
$^{166}\mathrm{Hf}$	0.275	-0.013	0.013	
$^{168}\mathrm{Hf}$	0.165	-0.013	0.0125	
$^{170}\mathrm{Hf}$	0.145	-0.012	0.011	0.1167
$^{172}\mathrm{Hf}$	0.135	-0.011	0.010	0.1013
$^{174}\mathrm{Hf}$	0.132	-0.010	0.010	0.0950
$^{176}\mathrm{Hf}$	0.105	-0.012	0.0095	0.0984
$^{178}\mathrm{Hf}$	0.086	-0.013	0.0095	0.0980
$^{180}\mathrm{Hf}$	0.068	-0.013	0.010	0.1040
$^{182}\mathrm{Hf}$	0.062	-0.0135	0.0105	

3.1 能谱

图(1—5)显示了^{164—182}Hf核的理论和实验能 谱^[5,6]的对比. 总体上理论值和实验值符合的很好, 特别是基带, γ 带和第一个 β 带,各能级理论值与实验 值的差别在预料之中,其原因是没有考虑多带耦合等 因素.

图 1 164 Hf 和 166 Hf 核的计算能谱与实验谱的比较

图 2 ¹⁶⁸Hf 和 ¹⁷⁰Hf 核的计算能谱与实验谱的比较

 $^{164-168}$ Hf 理论值与实验值符合的很好. 164 Hf 的 三声子态的实验值几乎不存在能级分裂现象,而理 论计算的结果则存在着明显的能级分裂,可能的原 因除与参数的选取有关外,还与没有考虑多带耦合 等因素有关. 166Hf 三声子态的能级分裂较小,反 映了原子核集体振动时存在一个非谐振作用项.两 声子态的能级分裂较大,这很难用一个非谐振作用 项来解释,可能和单粒子的激发有关. ¹⁶⁸Hf核的 激发态上表现出了低能 γ 振动带(K=2)能谱中普 遍存在的staggering现象.虽然实验结果也存在明显 的staggering现象, 但实验所观察到的能谱要比理论 计算的结果均匀的多^[7],为解决这一问题IBM1中引入 核子相干对D间的三体相互作用,在IBM2中,Sevrim A等在原子核的哈密顿量中引入三轴转子势^[8],龙桂鲁 等在IBM2中引入同类玻色子四极相互作用¹⁹而使得 原子核能谱的staggering现象得以改善.我们也发现了 第二个β带的理论值偏高.

 $^{174-180}$ Hf的*g*带和 γ 带理论值与实验值符合的 很好,但第一个 β 带的 0_{2}^{+} , 2_{3}^{+} 的理论值普遍偏低,而 第二个 β 带的理论值普遍偏高.激发态上仍表现出 了staggering现象.

图 5 ¹⁸⁰Hf 和 ¹⁸²Hf 核的计算能谱与实验谱的比较

3.2 电磁跃迁

通过计算能谱及得到的相应波函数,也可以计算 电磁跃迁几率.例如E2跃迁算符:

$$\hat{T}(\text{E2})^2_{\mu} = e_2 \left[(\hat{s}^+ \hat{\tilde{d}}^+ \hat{s})^2_{\mu} + \chi (\hat{d}^+ \hat{\tilde{d}})^2_{\mu} \right]$$

上述符号的意义与通常的IBM文献相同.运用 表1列出的e₂参数计算了每个核的电四极跃迁值,所 有数据列于表2,并对 B(E2) 值的理论和实验数据作了 对比.

从表2可以看出,计算值和现有的实验值符合 的很好. 如果用 Δn 表示跃迁各态间的声子数差, 我们发现一部分 $\Delta n = 1$ 各态间跃迁的B(E2)值很 大,说明这几个核具有较强的振动性(U(5)对称 性), 另外也有一部分 $\Delta n = 1$ 各态间跃迁(主要指 γ 带 向 q 带 跃 迁)的 B(E2) 值 很 小, 如 ¹⁷⁸ Hf 同 位 素 核 的 $2_2^+ \rightarrow 2_1^+ B(E2)$ 的实验值为 $261(e^2 fm^4)$ 而理论值 为3(e²fm⁴),这也说明这些核又具有转动性(SU(3)对 对称性)或者说主要是由于SU(3)极限跃迁的选择定 则 $\Delta\lambda = 0$ 和 $\Delta\mu = 0$ 决定的,由于 β 带和 γ 带属于相同 的 SU(3) 表示 ($\lambda = 2N - 4, \mu = 0$), 而 g 带属于 SU(3)的另一表示 ($\lambda = 2N$, $\mu = 0$), 也就是 γ 带向 g 带跃迁 主要是由SU(3)对称性的一些小破缺项引起的,所以 这样的跃迁是很弱的.此外对核174-176Hf的B(E2, $2_2^+ \rightarrow 0_1^+$)其跃迁几率不为0的事实可能暗示存在 着一定程度的对称破缺. 另外我们还发现声子数

4 结论

应用相互作用玻色子模型研究了^{164—182}Hf 同位 素核的能谱和电四极跃迁.结果表明^{164—182}Hf 同位素 核可以用一个*U*(5)到*SU*(3)的哈密顿量来描述,或者 说^{164—182}Hf 同位素核是*U*(5)到*SU*(3)的过渡核.同 时我们也发现理论和实验结果还存在一定偏差,说明 在哈密顿量中必须考虑其它的作用项,如对作用等,但 总体上二者符合的很好.

参考文献(References)

- SHI Z Y, DAN H J, ZHANG Z J et al. Journal of Central China Normal University(Nat.Sci.), 1998, **32**(1): 34 (in Chinese) (石祝一, 但汉久, 张战军等. 华中师范大学学报(自然科学版), 1998, **32**(1): 34)
- SANG J P, DAN H J, LIU Y. J. Wuhan. Univ. (Natural Science Edition), 1996, **42**(3): 321(in Chinese) (桑建平, 但汉久, 刘庸. 武汉大学学报(自然科学版), 1996, **42**(3): 321)
- GONG L X, LIU S X, ZHU H B et al. HEP & NP, 2002, 26(2): 164(in Chinese)

表 2	^{164—180} Hf 同位素核电磁跃迁的 B(E2) 理
论和	I相应的实验值 ^[5]

nucleus	J_i	J_f	$\operatorname{Expt}/e^{2}\operatorname{fm}$	${\rm Cal}/e^2 fm^4$
$^{164}\mathrm{Hf}$	2^{+}_{1}	0_{1}^{+}	3039	3036
	4_{1}^{+}	2_{1}^{+}	5492	5358
	6_{1}^{+}	4_{1}^{+}	9064	6444
	8^{+}_{1}	6_{1}^{+}	5865	6892
$^{170}\mathrm{Hf}$	2_{1}^{+}	0_{1}^{+}	10069	10067
	4_{1}^{+}	2^{+}_{1}	14544	14196
	6_{1}^{+}	4_{1}^{+}	14432	15267
	8_{1}^{+}	6_{1}^{+}	16782	15424
$^{174}\mathrm{Hf}$	2_{1}^{+}	0_{1}^{+}	8771	8775
	2^{+}_{2}	0_{1}^{+}	121	6
	2^{+}_{3}	0_{1}^{+}	276	5
	2^{+}_{4}	4_{1}^{+}	0	0
	6^+_3	4_{1}^{+}	0	2
$^{176}\mathrm{Hf}$	2_{1}^{+}	0_{1}^{+}	10721	10723
	2^{+}_{2}	0_{1}^{+}	58	2
	6^{+}_{2}	6_{1}^{+}	0	7
	6^+_2	4_{1}^{+}	0	1
$^{178}\mathrm{Hf}$	2_{1}^{+}	0_{1}^{+}	9457	9459
	2^{+}_{3}	0_{1}^{+}	3	1
	2_{4}^{+}	0_{1}^{+}	18	0
	2^{+}_{2}	4_{1}^{+}	15	6
	2^{+}_{2}	2^{+}_{1}	261	3
	2_{4}^{+}	4_{1}^{+}	5	0
	6_{1}^{+}	4_{1}^{+}	13025	14462
	8^+_1	6^+_1	14095	14728
	10^{+}_{1}	8^+_1	15285	14575
	12_{1}^{+}	10^{+}_{1}	15226	14138
	14_{1}^{+}	12_{1}^{+}	17248	13475
$^{180}\mathrm{Hf}$	2_{1}^{+}	0_{1}^{+}	9357	9360
	4_{1}^{+}	2_{1}^{+}	13885	13218
	6_{1}^{+}	4_{1}^{+}	13221	14253
	8^{+}_{1}	6_{1}^{+}	15092	14460
	10^{+}_{1}	8_{1}^{+}	14489	14233
	12^+_1	10^{+}_{1}	14006	13708

(龚伦训, 刘树新, 朱红波等. 高能物理与核物理, 2002, **26**(2): 164)

- 4 GONG L X, LIU S X, ZHU H B et al. HEP & NP, 2002,
 26(4): 371(in Chinese)
 (龚伦训, 刘树新, 朱红波等. 高能物理与核物理, 2002,
 26(4): 371)
- 5 CHU S Y, Hordberg H, Firestone R B et al. lsotopes Explorer 2.00, April 5, 1997
- Grigoriev, Gladkova. Physics of Atomic Nuclei., 2000, 63: 700
- 7 Casten R F, Brenlsno P Von. Phys lett., 1995, ${\bf 152B}:$ 22
- 8 LONG G L. Phys. Rev., 1997, C55: 3163
- 9 LONG G L, LIU Y X, SUN H Z. J. Phys., 1990, G16: 813

Low-Lying Spectra and Electromagnetic Transition Rates in $^{164-182}$ Hf in the Interacting Boson Model^{*}

FAN Ti-Gui¹⁾ LÜ Li-Jun ZHANG Jin-Fu

(Department of Physics, Chifeng University, Chifeng 024001, China)

Abstract Spectra and E2 transition for the even-even ${}^{164-182}$ Hf isotopes are studied in the framework of the interacting boson model. A schematic Hamiltonian can be used to describe their spectra and E2 transition. The results show that ${}^{164-182}$ Hf are in the transition from the vibrational limit to rotational limit.

Key words spectra, electromagnetic transition, positive parity collective state

^{*} Supported by National Natural Science Foundation of China(10047001, 10265001) and Key Scientific Research Fund of Inner Mongolian Educational Bureau (ZD01038)

¹⁾ E-mail: fantigui@sina.com