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Abstract  A New relativistic and singularity free baryon form factor for crossing channel study is 

proposed. This new form factor satisfies the crossing symmetry law of strongly interacting particle 

scattering amplitudes transfered from t-channel to s-channel or the inverse. 
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It is well known that baryon is not a point-like, structureless, fundamental particle but a 
sizeable object in space. A baryon consists of quarks and gluons with a volume occupied in space. 
Accordingly, when treating an interacting physical process involved a baryon a form factor 
described the internal quark-gluon structure of baryon must be used, which has been shown to be 
crucial in improving dramatically the theoretical description of experimental observables. 

In the study of diffractive processes, the scattering amplitude of strongly interacting particle 

must satisfy the crossing symmetry required by S-matrix[1], since the S-matrix must be an analytic 
function and analytically continued from one channel to other channel. For example, when 
studying the asymptotic behavior of scattering amplitude for strongly interacting processes, the 
t-channel (a+⎯c →⎯b +d) amplitude At

a+⎯c→⎯b + d (s, t) must be transfered into the amplitude of the 
s-channel (a+b →c+d) As

a+b→c+d (s, t), and the two amplitudes are required to satisfy the crossing 
symmetry relation[1]

( ) ( ) ( ) ( )u,s,tAu,t,sA s
ttt

t
dcbadbca +→++→+

=  ,                       (1 ) 

where s, t and u are the mandelstam variables in s-channel and defined in the following way   
                    s = (pa + pb)2 ,  t = (pa－pc)2 ,  u = (pa－pd)2 ,                   (2) 
for the process a+b→c+d as shown in Fig.1. 
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The corresponding t-channel process a+⎯c→⎯b+d is shown in Fig.2, where the mandelstam 
variables st, tt and ut are defined in the same way as that in Eq. (2). 

Fig.1.  Schematic representation of two-body 

strong interaction in s-channel. The shady circle 

denotes strong interaction. The solid line repre- 

sents strongly interacting particle a, b in the initial 

state and c, d in the final state. 

Fig.2.  Schematic representation of two-body 

strong interaction in t-channel. The⎯b,⎯c denote 

the corresponding anti-particles of the particles 

 b and c, respectively. 

Unfortunately, all of commonly used form factors such as dipole form factor[2]
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used in diffractive processes, and exponential form factor[3]

                            Fexp(t)= exp(t/λ2)                                   (4) 
or the multipole form factor[4]
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are unsuitable for analysing involving channel crossing. For example, the exponential form factor 
Fexp(t) in Eq. (4) is analytic in the s-channel where t ≤ 0, s > 0 but diverges in the t-channel where  
t > 0, s ≤ 0. The multipole form factor Fmulti(t) in Eq. (5) has no pole on the real axis of t in the 
s-channel where t ≤ 0 but will have it in the t-channel where t > 0. Conversely, if we use exp 
(－t / λ2) or [λ2/(λ2 +t)]n, then the situation will be reversed. 

Needless to say, the dipole form factor F1(t) in Eq. (3) has many poles, such as t = 4M2 and  t 

=0.72GeV2. When t =
80.2

4 2M , F1(t)=0. Obviously, the dipole form factor F1(t) does not satisfy the 

crossing symmetry and cannot be used in any crossing channel calculation. 
To overcome this difficulty, we need to propose in this note a new relativistic and singularity 

free form factor, which must satisfy the following physical requirements: 
(1) It should be an analytic function of t so that it can be continued analytically from 

s-channel to t-channel, and vice verse. 
(2) Since in the t-channel t > 0 and in the s-channel t ≤ 0, itshould behave as the following, 

( ) 02
L ⎯⎯ →⎯ ±∞→ttF  . 
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(3) It should neither diverge with t →± ∞, nor have a pole in the t, and it must be normalized 
as 

( ) 12
res

2
L == MtF  . 

Therefore, the form factor may have the form as 
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where L is the orbital angular momentum of the relative motion of the particle. (t/4－ )2
NM L≡ fL 

=q 2 L  reflects the qL-dependence of the FL(t). tr = with M2
ξM ξ being the mass of exchanged particle 

in t-channel. q and qr are , respectively, the off- and on-shell relative momentum in the c.m. system. 
The FL has, therefore, the correct threshold qL-dependence. 

In Eq. (6), xs(t) ≡ (t−2 )/ . The function R (x) is analytic and is defined by 2
NM 2

s(t)λ
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It rapidly changes from 0 to 1 when x changes from negative value (x < 0) to positive one (x > 
0), with a being controlling transition speed at x=0. The x-dependence of R(x) with a = 10 is given 
in Fig.3. 

Fig. 3.  x-dependence of R(x) . 

With a > 10, R(x) is very close to a step function but does not have the discontinuity of the 
latter. Consequently, the form factor is a continuous function of t. 

In the s-channel (t ≤ 0, s > 0) 
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which goes to 0 as t →－∞. Hence, λs controls the form factor. Since FL(t) does not have the 
physical-channel energy s as an explicit variable, it does not diverge with s. 

In the t-channel (t > 0, s ≤ 0), when t reaches the t-channel physical domain t > 4 , we 

have 

2
NM
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 ( )2L /2exp ttt λ－≈ .                               (10) 

Therefore, when t→ +∞, FL(t) →0, exhibiting the correct energy behaviour in the t-channel.Hence 
in the t-channel the λt controls the form factor. 

The above well-behaved t-dependence of FL(t) makes the form factor in Eq. (6) very good for 
continuing the scattering amplitudes between the direct and crossed channels. Notice that the form 
factor FL(t) in Eq. (6) proposed by us has no singularity in t. Particularly, when one studies on 
mass shell behavior, t = , one has F2

resM L(t = ) = 1. This is the normalization of form factor 

used to date. 

2
resM

The t-dependence of (t) is shown in Fig.4. In order to comparing with dipole form factor 
F

2
LF

1(t), Fig.5 shows the behaviour of F1(t) and its comparison with F  (t). 2
L

Fig. 4.  Behaviour of  as t variation.          Fig. 5.  Behaviour of F)(2
L tF 1(t) as t variation. 

With the new form factor (t) defined in Eq. (6), the pp elastic scattering experimental data 

has been reproduced successfully in a tensor glueball exchange model

2
LF

[4]. The new form factor will 
be also applied to other diffractive processes[5]. However, it should be pointed out that not like the 
form factors used commonly, such as monopole, exponential and dipole form factor, the form of 
our new form factor in Eq. (6) is not unique, but it is singularity free form factor, the only one can 
be used to analyses involving channel crossing. It also give a most likely result of commonly used 
form factors for different purposes in different physical processes with a good stability as λs(t) 
variation[6]. 
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In conclusion, the dipole form factor given by Eq. (3) should not be used anymore in any 
calculations of the diffractive processes. The form factor with the form of Eq. (6) are strongly 
recommended to use in analysing diffractive processes. 
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摘要   提出了交叉道研究中的一种新的、相对论性的、无奇异性的顶角形状因子. 
使用该形状因子的散射振幅具有从 t道到 s道或从 s道到 t道的交叉对称性. 
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