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Abstract A New relativistic and singularity free baryon form factor for crossing channel study is
proposed. This new form factor satisfies the crossing symmetry law of strongly interacting particle

scattering amplitudes transfered from t-channel to s-channel or the inverse.
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It is well known that baryon is not a point-like, structureless, fundamental particle but a
sizeable object in space. A baryon consists of quarks and gluons with a volume occupied in space.
Accordingly, when treating an interacting physical process involved a baryon a form factor
described the internal quark-gluon structure of baryon must be used, which has been shown to be
crucial in improving dramatically the theoretical description of experimental observables.

In the study of diffractive processes, the scattering amplitude of strongly interacting particle
must satisfy the crossing symmetry required by S—matrixm, since the S-matrix must be an analytic
function and analytically continued from one channel to other channel. For example, when
studying the asymptotic behavior of scattering amplitude for strongly interacting processes, the
t-channel (a+ ¢ — b +d) amplitude A'; o, 54 (S, t) must be transfered into the amplitude of the
s-channel (a+b —c+d) A’ eia (S, 1), and the two amplitudes are required to satisfy the crossing

.
symmetry relation

AS)E‘)EM(SI 'ttﬁut)= Aegi)bac+d(t’s‘u) s ( 1 )
where S, t and U are the mandelstam variables in S-channel and defined in the following way
§= (pa + pb)2 ’ t= (pa pc)2 , U= (pa pd)2 > (2)

for the process a+b—c+d as shown in Fig.1.
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Fig.1. Schematic representation of two-body Fig.2. Schematic representation of two-body
strong interaction in s-channel. The shady circle strong interaction in t-channel. The b, ¢ denote
denotes strong interaction. The solid line repre- the corresponding anti-particles of the particles
sents strongly interacting particle a, b in the initial b and c, respectively.

state and c, d in the final state.

The corresponding t-channel process a+c—>b+d is shown in Fig.2, where the mandelstam
variables Sy, t; and U; are defined in the same way as that in Eq. (2).
Unfortunately, all of commonly used form factors such as dipole form factor
4M 7 2.80t
F (t) _4AMy 2.80 1
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used in diffractive processes, and exponential form factor
Feup(t)= exp(t/A%) )

or the multipole form factor

At

qum(t):|: a :| » nN=12,- (5)

are unsuitable for analysing involving channel crossing. For example, the exponential form factor
Fexp(t) in Eq. (4) is analytic in the s-channel where t < 0, s > 0 but diverges in the t-channel where
t> 0, s £ 0. The multipole form factor F,,;5(t) in Eq. (5) has no pole on the real axis of t in the
s-channel where t < 0 but will have it in the t-channel where t > 0. Conversely, if we use exp
( t/ ) or [A*/(A* +1)]", then the situation will be reversed.

Needless to say, the dipole form factor Fy(t) in Eq. (3) has many poles, such as t =4M* and t

2

=0.72GeV>. When t :%, F,(t)=0. Obviously, the dipole form factor F;(t) does not satisfy the

crossing symmetry and cannot be used in any crossing channel calculation.

To overcome this difficulty, we need to propose in this note a new relativistic and singularity
free form factor, which must satisfy the following physical requirements:

(1) It should be an analytic function of t so that it can be continued analytically from
s-channel to t-channel, and vice verse.

(2) Since in the t-channel t > 0 and in the s-channel t < 0, itshould behave as the following,

F2(t)—==>0 .



(3) It should neither diverge with t —+ oo, nor have a pole in the t, and it must be normalized
as
Fet=M2)=1 .

res

Therefore, the form factor may have the form as

2 2
t/4 M2 L et,u% l+e t 122
F2(t)= N | . , (6)
' () ( q; J [R( Xt)+emt2 ] [R(XS)+e v J

where L is the orbital angular momentum of the relative motion of the particle. (t/4 M 2)-=f_

=q?" reflects the g~-dependence of the Fy(t). t, = M; with M¢ being the mass of exchanged particle
in t-channel. g and g, are , respectively, the off- and on-shell relative momentum in the c.m. system.

The F has, therefore, the correct threshold qL-dependence.
In Eq. (6), Xs(t) = (t-2 M { )/ 2%, . The function R (X) is analytic and is defined by

ax

R(x)= (1 + tanh(ax)) = — )
2 e”+e ™

It rapidly changes from 0 to 1 when X changes from negative value (X < 0) to positive one (X >

0), with a being controlling transition speed at x=0. The x-dependence of R(X) with a = 10 is given

in Fig.3.
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Fig. 3. X-dependence of R(X) .

With a > 10, R(x) is very close to a step function but does not have the discontinuity of the
latter. Consequently, the form factor is a continuous function of t.

In the s-channel (t<0, s> 0)
FLz(t)oc fL[l+exp(t/lf)] ? -[exp( t//lz)] %) (®)

~tlexp(2t/ A}) ©)
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which goes to 0 as t — oo. Hence, A controls the form factor. Since F(t) does not have the
physical-channel energy S as an explicit variable, it does not diverge with s.
In the t-channel (t > 0, s < 0), when t reaches the t-channel physical domain t > 4 M, we

have

2

F2(t)oc fL[exp(t//lf)] ’ -[1+exp( t/lz)]

~thexp( 2t/ 2). (10)

Therefore, when t— +oo, F(t) —0, exhibiting the correct energy behaviour in the t-channel.Hence
in the t-channel the A controls the form factor.

The above well-behaved t-dependence of F(t) makes the form factor in Eq. (6) very good for

continuing the scattering amplitudes between the direct and crossed channels. Notice that the form

factor Fi(t) in Eq. (6) proposed by us has no singularity in t. Particularly, when one studies on

® one has Fi(t=M2 ) = 1. This is the normalization of form factor

res ? res

mass shell behavior, t = M
used to date.
The t-dependence of F (t) is shown in Fig.4. In order to comparing with dipole form factor

Fi(t), Fig.5 shows the behaviour of F(t) and its comparison with F} (t).
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Fig. 4. Behaviour of F’(t) ast variation. Fig. 5. Behaviour of F(t) as t variation.

With the new form factor F? (t) defined in Eq. (6), the pp elastic scattering experimental data
has been reproduced successfully in a tensor glueball exchange model”. The new form factor will
be also applied to other diffractive processesm. However, it should be pointed out that not like the
form factors used commonly, such as monopole, exponential and dipole form factor, the form of
our new form factor in Eq. (6) is not unique, but it is singularity free form factor, the only one can
be used to analyses involving channel crossing. It also give a most likely result of commonly used
form factors for different purposes in different physical processes with a good stability as Ay

. .16
variation .



In conclusion, the dipole form factor given by Eq. (3) should not be used anymore in any
calculations of the diffractive processes. The form factor with the form of Eq. (6) are strongly

recommended to use in analysing diffractive processes.
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