A New Level Scheme of 127 I *

ZHANG Yu-Hu¹ MA Ying-Jun² Y. Sasaki² K. Yamada² H. Ohshima²

S. Yokose² M. Ishizuka² T. Komatsubara² K. Furuno²

1 (Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 730000, China)

2 (Institute of Physics and Tandem Accelerator Center, University of Tsukuba, Ibaraki 305 - 0006, Japan)

Abstract Study of in-beam γ -ray spectroscopy of ¹²⁷ I has been performed using ¹²⁴ Sn (² Li, 4n)¹²⁷ I reaction at 32 MeV beam energy. A new level scheme of ¹²⁷ I has been established including 25 new levels and 52 new γ transitions. Negative-parity levels based on $11/2 - \pi h_{11/2}$ particle state have been observed up to $(35/2^{-1})$ extending our knowledge of decoupled structures to the heavier iodine isotope. Two $\Delta I = 2$ yrast positive-parity levels have been proposed to be associated mainly with the $\pi g_{7/2}$ configuration due to observations of several strong inter-band transitions. Two weakly populated $\Delta I = 2$ positive-parity levels and a high-lying $\Delta I = 1$ cascade have been newly identified and tentatively assigned as $\pi d_{5/2}$ one-quasiparticle and three-quasiparticle bands, respectively.

Key words in-beam γ -ray spectroscopy, level scheme of ¹²⁷ I, quasiparticle configuration

Excited states of transitional nuclei 117-127 I have been investigated in Refs. [1-4]. The collective features systematically observed in these unclei are the occurrence of $\Delta I = 2$ bands with stretched E2 transitions based on 5/2⁺, 7/2⁺, and $11/2^-$ states, and a $\Delta I = 1$ band characterized by M1 cascade and E2 crossover transitions based on a 9/2⁺ state. The $\Delta I = 1$ band has been explained as a rotational band based on a deformed $g_{9/2}$ proton hole state. The $\Delta I = 2$ bands, on the other hand, have been described as decoupled bands based on the bandheads arising from $d_{3/2}$. $g_{\gamma/2}$, and $h_{11/2}$ proton configurations^[1-4]. However, the inter-band M1 + E2 transitions between the members of $d_{5/2}$ and $g_{7/2}$ bands have been found in the recent investigations on $I^{121,123}$ $I^{(5-7)}$ and I^{25} $\Gamma^{7,8}$. These authors attributed such coupled bands to the $\pi g_{1/2}$ configuration with admixture of $d_{5/2}$ quasiproton. An oblate shape associated with this band was also proposed^{5.6} according to the calculations within the Strutinsky formulism using a Woods-Saxon potential. On the other hand, calculations within the core-quasiparticle coupling model^[9,10] predict the existence of two coupled bands in 123,125 I based $\pi g_{7/2}$ and $\pi d_{5/2}$ configurations at low excitation energies. A search for the πd_{s_2} coupled band in ¹²⁵ I has been made but no positive evidence has been observed^[8]. A previous investigation on $[127]I^{[3,4]}$ shows the $\Delta I = 2$ sequences of levels based on $5/2^+_1$ (g.s), $7/2_1^+$, and $11/2^-$ states up to $21/2^+$, $19/2^+$, and $23/2^-$ respectively. In order to identify new levels and transitions, and for understanding the nature of various bands, the structure of 127 I has been reinvestigated by in-beam γ -ray spectroscopic measurements in this work.

The experiment was performed at the tandem accelerator laboratory in the University of Tsukuba, Japan. We used the ¹²⁴ Sn(⁷Li, 4n)¹²⁷I reaction to populate the yrast and near-yrast levels

104-107

Received 22 October 2001

^{*} Supported by NSFC(10025525), JSPS Invitation Fellowship(L00515), Major State Basic Research Development Program (G2000077400), and The Chinese Academy of Sciences

in ¹²⁷ I The target was an enriched self-supporting ¹²⁴ Sn metallic foil of 4 mg/cm² thickness. A γ -ray detector array composed of one planar detector and 9 BGO-Compton-suppressed Ge detectors was used for the in-beam γ -ray measurements. Five Ge detectors were positioned at 37° and the others near 90° with respect to the beam direction so that the DCO ratios (Directional Correlations of γ -ray de-exciting the Oriented states) could be deduced from the coincidence data. All the detectors were calibrated using standard ¹⁵² Eu and ¹³³ Ba sources; typical energy resolution was 2.0–2.5 keV for the 1332 keV line from ⁶⁰ Co source. The beam energy of 32 MeV was used during X- γ and γ - γ -t coincidence measurements. A total of 40 millions γ - γ -t and 3 millions X- γ coincidence events was accumulated. These coincidence events were sorted into a symmetric and a non-symmetric (DCO sorting) matrix for off-line analysis.

From detailed analysis on the γ - γ coincidence relationships. γ -ray relative intensities, and DCO ratios, a new level scheme of ¹²⁷ I has been established as shown in Fig. 1 in which 25 new levels and 52 new γ -transitions have been assigned to ¹²⁷ I. In this work, some high-energy and close-lying double peaks have been identified; the observed crossover transitions and γ - γ coincidence relationships support the placements of these γ -transitions in the present level scheme which is largely extended comparing with the previous one^{-3,-}. Brief comments and discussions are given in the following.

Fig.1. Partial level scheme of 127 I deduced from the present work. Excitation energies of 0^+ , 2^+ , $\cdots 8^+$ states in 126 Te⁽¹¹⁾ relative to $11/2^-$ level in 127 I are indicated as black dots.

The negative-parity states labeled as (A) in Fig. 1 are extended from the $23/2^{-1}$ level previously observed^[3] up to $(35/2^{-1})$ state at 5243 keV excitation energy. The deduced DCO ratios

show stretched quadrupole characters for 982, 1013, and 601 keV γ -rays and dipole characters for 410 and 274 keV lines. These results support the spin and parity assignments for the levels above 23/2⁻ state. A sequence of levels based on 11/2⁻ state has been observed in ¹¹⁹⁻¹²⁷I and explained as decoupled bands based on the $h_{11/2}$ proton configurations^[1-4]. The decoupled nature of these bands is inferred from the similar energy level spacings with those of the corresponding even-even cores. This is really the case comparing ¹²⁷ I with ¹²⁶ Te^[11] as shown in Fig. 1 where the level spacings in ¹²⁶ Te are indicated by black dots. The striking similarity suggests that the negative-parity levels from 11/2⁻ through(27/2⁻) are formed by coupling the aligned $h_{11/2}$ proton to the core states from 0⁺ through 8⁺.

The two $\Delta I = 2$ sequences of band (C) have been established previously^[3] up to 19/2⁺ and 21/2⁺, respectively, by adding 880 and 934 keV transitions to the yrast 15/2⁺ and 17/2⁺ states. These two γ rays may be the 877 and 930 keV lines observed in this work; several parallel crossover transitions from the de-excitation of the new level at 2901 keV support the placements of the associated γ transitions and γ -ray energies determined in this work. Three new γ rays (912, 812, and 851 keV) are observed and placed in the level scheme extending the $\Delta I = 2$ sequences up to (25/2⁺) and (23/2⁺), respectively. The deduced DCO ratios show stretched quadrupole characters for 912, 812, 850, 545, 930, and 1171 keV γ rays, and dipole characters for 113, 95, 156, and 294 keV lines supporting the spin and parity assignments shown in the figure. Above (23/2⁺) state at 2901 keV, a $\Delta I = 1$ cascade with weak crossover transitions has also been observed; this is probably a 3-qp band.

The two $\Delta I = 2$ cascades of band (C) have been described in Refs. [1,4] as decoupled bands based on the bandheads arising from $d_{5/2}$ and $g_{7/2}$ proton configurations, respectively. The strong inter-band transitions (593 and 550 keV γ rays) between these $\Delta I = 2$ sequences suggest that these $\Delta I = 2$ bands have similar configuration with a large overlap in their wave functions. Other interband transitions (214, 396, 481, and 432 keV γ rays) are also observed connecting states up to $21/2^+$ at 2788 keV. Based on this and the systematics of the similar bands and decay patterns in the neighboring iodine nuclei¹⁵⁻⁸, the two yrast $\Delta I = 2$ bands may be interpreted as signature partners of the same configuration. The $\alpha = -1/2$ signature branch is favored in energy, therefore, the main component may be the $g_{7/2}$ proton configuration, and the 651 keV transition is assigned as out-ofband decay as arranged in Fig.1

Apart from the yrast positive-parity band discussed above, two new $\Delta I = 2$ cascades labeled as band (B) have been newly observed feeding to the second 7/2⁺ and 9/2⁺ states. The linking transitions with $h_{11/2}$ decoupled band and $g_{7/2}$ band fix the ordering and the spin and parity of associated levels. On the other hand, weak inter-band transitions (116, 562, and 475 keV lines) are also observed. These two $\Delta I = 2$ cascades are very probably based on the $d_{5/2}$ proton configuration. The observation of both $\pi d_{5/2}$ and $\pi g_{7/2}$ bands is consistent with theoretical predictions within the core-quasiparticle coupling model^[9,10].

The authors wish to thank the staffs in the Institute of Physics and Tandem Accelerator Center, University of Tsukuba, Japan for their help and hospitality during experiment.

References

- 1 Gordon D M, GAI M, Gaigalas A K et al. Phys. Lett., 1977, B67:161
- 2 Hagemann U, Keller H-J, Brinckmann H-F. Nucl. Phys., 1977, A289:292
- 3 Shroy R E, Gordon D M, GAI M et al. Phys. Rev., 1982, C26:1089

- 4 GAI M, Gordon D M, Shroy R E et al. Phys. Rev., 1982, C26:1101
- 5 LIANG Y, Fossan D B, Hughes J R et al. Phys. Rev., 1992, C45:1041
- 6 LIANC Y, Fossan D B, Hughes J R et al. In: Proceedinds of the Inter national Conference on High Spin Physics and Gammasoft Nuclei, Saladin J X et al ed. Sigapore: World Scientific Press, 1991. 308-314
- 7 Goswami R, Sethi B, Banerjee P. Phys. Rev., 1993, C47:1013
- 8 Sharma H, Sethi B, Goswami R et al. Phys. Rev., 1999, C59:2446
- 9 Donau F, Hagemann U. Z Phys., 1979, A293:31
- 10 Kostova I. G., Andrejtscheff W., Kostov I. K et al. Nucl. Phys., 1988, A485:31
- 11 ZHANG C T, Bhattacharyya P, Daly P J et al. Nucl. Phys., 1998, A628:386

¹²⁷ I 核的新能级纲图*

张玉虎¹ 马英君² Y.Sasaki² K.Yamada² H.Ohshima² S.Yokose² M.Ishizuka² T.Komatsubara² K.Furuno² ¹(中国科学院近代物理研究所 兰州 730000)</sup>

2 (Institute of Physics and Tandem Accelerator Center, University of Tsukuba, Ibaraki 305 - 0006, Japan)

摘要 利用¹²⁴ Sn(⁷ Li,4n)¹²⁷ I反应研究了¹²⁷ I核的在東 γ 谱,建立了包括 25 个新 能级和 52 条新 γ 射线构成的新能级纲图.将基于 $\pi h_{11/2}$ 粒子态(11/2⁻)的负字称 能级推高到(35/2⁻),在较重的¹²⁷ I核中得到了退耦合能级结构.由于在两个正 字称带 $\Delta I = 2$ 能级系列中观测到了强的带间跃迁,建议此带的主要成分为 $g_{7/2}$ 质子的组态.另外还观测到了两个正字称 $\Delta I = 2$ 和 $\Delta I = 1$ 能级系列,它们可能 基于 $\pi d_{3/2}$ 的单准粒子带和一个 3 准粒子带.

关键词 在束γ谱"□Ⅰ核的能级纲图 准粒子组态

2001 - 10 - 22 收稿

^{*}国家杰出青年科学基金(10025525),日本学术振兴会 JSPS(L00515),国家重点基础研究发展规划(G2000077400) 和中国科学院资助