遗传算法在检测耦合腔链各单腔 频率中的应用

倪 屹 童德春 林郁正

(清华大学工程物理系 北京 100084)

摘要 利用遗传算法来诊断耦合腔链的各单腔频率,不需插入活塞探针进入耦 合腔链,由计算机通过微波网络分析仪,从腔链的输入波导获取通带特性数据, 便可求解各单腔频率.这种方法可以简化调谐过程,并可以用来诊断密封腔链. 此问题可以看作是一个非线性最优化问题,我们选择遗传算法来解决此问题,并 且在遗传算法中加入了最小二乘的变异算子,使遗传算法的收敛速度和精度都 得到显著改善.数值实验证实了这种算法的优越性,并且与传统的遗传算法进 行了比较.

关键词 遗传算法 最小二乘法 耦合腔链 通带特性 单腔频率

1 引言

在研制射频直线加速器时,需要对加速管进行精心的调谐.通常要在腔链中插入天 线探针或短路活塞,逐腔进行测量,以确定各单腔的调谐方向,因而工作量大,花的时间 长,对长腔链或非均匀腔链则更为麻烦.此外,研制全密封的加速管,若在排气密封或运 输安装过程中,发生变形,腔链失谐的情况是不可能通过插入探针来诊断的.特别是超导 腔链,对场的平坦度要求严格,对微波调谐要求也更高,而处于运行状态的超导腔,整个腔 链密封浸泡在液氮中,也是不能引入探针或其它扰动小珠来诊断失谐状态的.因此,研究 不用插入探针或活塞,就能检测腔链各单腔频率的测试技术,是很有意义的课题.80年 代初、CERN的E. Habel等在研制超导腔链时,发展了一种方法^[1],立足于耦合谐振腔链 的等效电路理论,从加速结构外耦合回路测量腔链的色散频率,能计算出各单腔的频率, 以指导调谐.他们研究的是由5个腔组成的均匀单周期结构,工作于超导态,腔的损耗可 完全忽略,各单腔频率的变化范围也较小,采用了一级微扰处理,模型比较简单.

我们探讨了一种新的方法来研究较为普适的腔链,考虑了损耗,可以是单周期或双周 期,甚至是非均匀结构.从测得的腔链的通带特性曲线可以推算出腔链的单腔频率和腔间

2000-07-05 收稿

689-695

耦合系数. 这是一个逆问题,在数学上叫做非线性最优化问题.

解决非线性最优化问题的方法有很多,比较典型的有梯度算法,如牛顿法^[2]和非线性 最小二乘法^[3]等.这种方法是沿负梯度方向搜索来寻找最优点.梯度算法收敛很快,但 有两个缺点:一是可能局部收敛,二是严重依赖于初值.近来一种基于"进化"思想的方 法:遗传算法^[4]被用来解决优化问题.梯度算法从一个单一的初值开始迭代,而遗传算法 是从一个初始的种群开始进化,这使遗传算法不再依赖于初值,并且增加了算法全局收敛 的可能.另外由于搜索过程是随机的,这就减小了遗传算法陷于某个局部极值点的可能 性.但是遗传算法也存在收敛慢和精度不高的问题.

受梯度算法和遗传算法的启发,我们发展一种新的遗传算法,在此算法中最小二乘法 作为一种新的变异算子引人到遗传算法中,这种方法将概率算法和梯度算法结合起来,能 较好的跳出局部极值点而达到全局收敛.用此算法来诊断了一些非均匀腔链,取得了比 较满意的结果.

2 基本原理

基本原理是立足于耦合腔链的等效电路理论^[5](见图 1),其中 f_i,Q_i 为各单腔的固 有频率及品质因数(*i*=1,2,……,N),*k*_{0i}为腔间邻近耦合系数(*i*=1,2,……,N-1),*k*_{1i} 为次邻近耦合系数(*i*=1,2,……,N-2). β₁,β₂ 分别是输入、输出波导和腔链的耦合度. 从等效电路理论可以得到以下的矩阵方程:

$$\begin{bmatrix} a_{1} & \frac{k_{01}}{2} & \frac{k_{11}}{2} & & & 0 \\ \frac{k_{01}}{2} & a_{2} & \frac{k_{02}}{2} & & & \\ \frac{k_{01}}{2} & \frac{k_{02}}{2} & a_{3} & & \vdots \\ & & \ddots & & & 0 \\ & & & \frac{k_{1x-2}}{2} \\ & & & & \\ & & & & \frac{k_{1x-2}}{2} \\ 0 & & 0 & \frac{k_{1x-2}}{2} & \frac{k_{0x-1}}{2} & a_{x} \end{bmatrix} \cdot \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \\ \vdots \\ \vdots \\ X_{x} \end{bmatrix} = \begin{bmatrix} I_{1} \\ I_{2} \\ I_{3} \\ \vdots \\ I_{x} \end{bmatrix}, \quad (1)$$

(1)式中, $I_1 = -\frac{E_1}{\sqrt{2L}}$ 是激励源, $X_i = \sqrt{2L_i}i_i$ 是与复电流 i_i 成比例的量, F 是工作频率.

$$1 - \frac{f_1^2}{F^2} - j \frac{f_1(1+\beta_1)}{fQ_1}, \ a_N = 1 - \frac{f_N^2}{F^2} - j \frac{f_N(1+\beta_N)}{fQ_N},$$
$$1 - \frac{f_i^2}{F^2} - j \frac{f_i}{fQ_i} \quad i \neq 1, N$$

耦合谐振腔链等效电路

对驻波腔链,设其输入耦合器的位置为 p,则从(1)式可以得到输入阻抗 Z_{in} 和反射 Γ

$$Z_{\rm in} = -1 + j \frac{FQ_{\rho}}{f_{\rho}\beta_1 X_{\rho}}, \qquad (2)$$

$$\Gamma(F) = \frac{Z-1}{Z+1} = 1 + j \frac{2f_{\rho}\beta_{1}X_{\rho}}{FQ_{\rho}}.$$
 (3)

从上可知,若已知 f_i , Q_i , k_{0i} , k_{1i} 和耦合器在腔链中的位置(序号为 p)及其与输入波导的耦合度 β 等参量,则通过解(1)式,可求得耦合谐振腔链在工作模频带内的反射系数 $\Gamma(F)$ (见图 2).

图 2 腔链通带特性曲线 Γ(F)

现在希望通过实验测得的腔链通带特性 $\Gamma(F)$,来推算 f_i , Q_i , k_{0i} , k_{1i} , β_1 等腔链固 有的参量.对于均匀的单周期或双周期结构,腔的参数变为各腔相等或隔腔相等,因此单 周期仅具有 f_0 , Q_0 , k_0 , k_1 ,双周期仅具有 f_1 , f_2 , Q_1 , Q_2 , k_0 , k_{11} , k_{12} 等数个固有参量.当 组成腔链的腔数 N 多于固有参量数时,可通过实测 N 个色散频率后,直接利用最小二乘 法拟合色散方程,求解腔链的单腔频率及耦合系数^[6].现探讨的模型更为一般,希望利用 腔链通带特性 $\Gamma(F)$,能求解各单腔频率 f_i ,腔间耦合系数 k_{0i} 和输入耦合度 β_1 .在实际 腔链中, k_{1i} 与 k_{0i} 相比是很小的(对 S 波段的腔链, k_{1i} 大约是 k_{0i} 的 10⁻²),因此,为了简化 数据处理过程,提高软件运行速度,根据实际研制加速管可行的条件,作如下假定: k_{1i} 已 知(通常近似为 0);品质因数 Q_i 可按腔形设计和模型测量确定,在调谐过程中变化不大, 因此 k_{1i} 和 Q_i 在数据处理中可取为设定值,仅有 f_i , k_{0i} 和 β_1 等共 2N 个参量待定.

3 算法说明

利用遗传算法来解决参数优化问题,首先根据需要解决的问题随机产生一组染色体 群体,然后在保留原群体中最好个体的基础上对原染色体群体进行遗传操作来产生新的 群体.因此,要实现这些遗传操作,需要确定一套遗传基因编码规则,适应度函数,选择规则,遗传算子(复制,杂交和变异)以及终止判据等.

编码规则有二进制编码和实数编码,分别用二进制数和实数对应的基因来表示需要 优化的参数.在我们的问题中,采用实数编码更为方便.随机抽取父代个体进行遗传操 作,不同个体被选择的概率不同,好的个体被选中的概率要大一些.父代个体被原封不动 的保留到子代叫复制,随机地交换两个父代染色体的相应基因片断而产生两个新个体叫 杂交,变异操作是通过随机改变某个父代染色体的基因来实现的.变异操作可以保持群 体的多样性,这样可以使遗传算法跳出局部极值点而达到全局收敛.终止判据可以通过 设定最大进化代数来确定,当进化次数达到最大代数 t_{max}时,遗传算法终止.

在我们的问题中,定义以下的适应度函数:

$$\varepsilon = \sum_{i=1}^{M} \left(\left| \Gamma_{ci} \right| - \left| \Gamma_{mi} \right| \right)^{2}, \qquad (4)$$

式中 c,m 分別表示计算值和测量值. M 是测量的通带特性中采样的点数, $|\Gamma_{mi}|$ 是测量 值, $|\Gamma_{ci}|$ 是计算值.

通常,遗传算法在初始的演化代数收敛得比较快,但到后面的代数收敛得非常慢,而 且精度也不高.跟遗传算法相比,非线性最小二乘法收敛得很快,精度也很高,但严重依赖于初值,初值不合适,计算将发散.

传统遗传算法的变异算子是在给定的区间内任意的产生一个随机数,因为这种变异 是盲目的,所以遗传算法在后面代数中收敛很慢.另外,由于通常遗传算法的变异率比较 低(一般<0.1),因此在后面的进化代数中不足以维持群体的多样性.因此我们考虑一些 特殊的变异,特别是沿着适应度函数的负梯度方向的变异.这样,随着适应度函数的减 小,群体在不断的进化.在梯度算法中,非线性最小二乘法是一种很有效的方法(例如程 序 NL2SOL^[7]).在本文中,最小二乘法被当作一种变异算子加入到遗传算法中,在每一 代中,随机挑选一个父代个体作为非线性最小二乘法的迭代初值,来进行最小二乘迭代. 另外,如果在后面的进化代数中,不能保持群体的多样性,群体中多数个体都很"相似"(它 们都分布在一个很小的区域内),从这些相似的个体出发,遗传算法将得到相同的结果,这 将极大的浪费计算时间,并且可能限于局部极值点.相反,如果能够保持群体的多样性, 最小二乘迭代就可能从远离原局部极值点的初值开始而达到另外的局部极值点,如果此 局部极值点比原来的好,则进化是可行的,这样不断进化下去,直到找到全局最优点为止, 因此保持群体的多样性是非常重要的.为了保持群体的多样性,我们将普通变异算子的 变异率提高到0.3(如果变异率太大,遗传算法将不稳定,并且解将振荡,因此,选择变异 率为0.3).结果大大的提高了遗传算法的收敛性能.同时由于整体上的遗传算法还在运 作,遗传算法的概率特性并没有改变,因此算 法并不会陷于某个局部极值点而无法全局收 敛.最小二乘变异可以提高算法的收敛速度, 如果掉进局部极值点,其它的变异算子依然 可以将其"拉出"局部极值点,因此这种算法 集合了遗传算法和最小二乘法的优点.程序 框图如图 3:

4 数值实验结果

首先用理论值检验了算法的自治性,我 们选择了一个由 11 个腔组成的 S 波段的非 均匀腔链,代入(1)式中,可以得到 $\Gamma(F)$,然 后将此 $\Gamma(F)$ 作为要拟合的曲线,通过上面的 算法来反推腔链的各参数.(注:以下的频率 单位是 MHz)

例1:试验没有最小二乘变异的普通遗传

图 3 程序框图

算法, t_{max} = 30000,结果表明收敛非常慢, 而且精度也很差, 见表 1(只将单腔频率 f; 作为 变量)

	真偵	迭代结果	误差		真值	迭代结果	误差
f_1	2983.00	2982.16	-0.84	f_7	2996.07	2995.63	- 0.44
f_2	2999.02	3000.32	1.30	f_8	2988.60	2991.43	2.83
f_3	2997.14	2997.06	0.08	f,	2998.90	2999.21	0.31
f_4	3000.15	2996.85	- 3.30	f_{10}	3002.03	3007.78	5.75
f_5	2996.17	2997.74	1.57	f_{11}	2996.11	2994.73	- 1.38
f_6	2998.86	2995.94	- 2.92				

例 2:试验带最小二乘变异的遗传 算法, $t_{max} = 5000$,结果表明收敛较快,而 且精度很高,见表 2(比例 1 还增加了变 量个数,将单腔频率 f_i ,耦合系数 k_{0i} 和 输入耦合度 β_1 作为变量.)

例3:最后用本程序诊断了一条真 实腔链,其 f_6 和 f_{11} 失谐, $t_{max} = 5000$. 与实验结果进行了比较,两者误差在 1MHz左右,基本上得到实验测量精度, 见表 3.将计算所得的腔链参数代入 (1),可得到一条 $\Gamma(F)$ 曲线,和实验所

	真值	迭代结果			真值	迭代结果	误差
f_1	2983.00	2983.00	0.00	k ₀₁	0.0395	0.0395	0.0000
f_2	2999.02	2999.02	0.00	k 02	0.0252	0.0252	0.0000
f_3	2997.14	2997.14	0.00	k 03	0.0219	0.0219	0.0000
f_4	3000.15	3000.15	0.00	k ₀₄	0.0220	0.0220	0.0000
fs	2996.17	2996.17	0.00	k 05	0.0219	0.0219	0.0000
f ₆	2998.86	2998 .86	0.00	k 06	0.0218	0.0218	0.0000
f_7	2996.07	2996.07	0.00	k 07	0.0195	0.0195	0.0000
f_8	2988.60	2988.60	0.00	k 08	0.0228	0.0228	0.0000
f9	2998.90	2998.90	0.00	k 09	0.0215	0.0215	0.0000
f_{10}	3002.03	3002.03	0.00	k 10	0.0215	0.0215	0.0000
f_{11}	2996.11	2996.11	0.00	β1	10.00	10.00	0.00

表 2 带最小二乘变异的遗传算法计算结果

表 3 与实验结果比较

	测量值	计算值	误差	1100 111	测量值	计算值	误差
f_1	2998.02	2998.40	0.38	k ₀₁	0.0399	0.0400	0.0001
f_2	2997.85	2996.53	- 1.32	k 02	0.0216	0.0210	0.0006
f_3	2997.97	2998.35	0.38	k ₀₃	0.0213	0.0220	0.0007
f_4	2998.10	2997.71	- 0.39	k 04	0.0217	0.0211	- 0.0006
f ₅	2997.95	2997.83	- 0.12	k 05	0.0219	0.0220	0.0001
f ₆	3005.70	3006.58	0.88	k 06	0.0215	0.0211	- 0.0004
f_7	2998.35	2999.08	0.73	k 07	0.0205	0.0213	0.0008
f ₈	2997.75	2997.08	-0.67	k 08	0.0215	0.0219	0.0004
fg	2997.72	2998.08	0.36	k 09	0.0216	0.0210	0.0006
f_{10}	2996.90	2997.04	0.14	k ₀₁₀	0.0217	0.0220	0.0003
f_{11}	3002.12	3002.33	0.21				

5 结论

普通的遗传算法对保证算法的全局收敛是比较有效的,但后面收敛非常慢并且精度 也不高;而传统的非线性最小二乘法具有较快的收敛速度和较高的收敛精度,但严重依赖 于初值,并且可能陷于局部极值点.因此在这两种算法的启发下,我们将非线性最小二乘 法作为一种遗传算子引入到遗传算法中,通过数值实验检验,结果与传统的遗传算法相 比,这种算法的收敛速度和解的精度都有显著提高.并与实验结果也进行了比较,基本上 达到实验测量的精度,因此这种方法将来可以代替传统的探针微扰法来获取腔链的微波 参量 f_i和k_o,,这将大大节省测量时间并使诊断密封腔链成为可能.

参考文献(References)

- 1 Hable E et al. Tuning of a Superconducting Accelerating Cavity Under Operating Conditions. CERN/EF/RF81 5, 1981
- 2 YUAN Ya-Xiang et al. Theory and Method of Optimization. Beijing: Science Publishing House, 1997. 1-339(in Chinese)

(袁亚湘等,最优化理论与方法,北京:科学出版社,1997,1-339)

- 3 Gay D M et al. An Adaptive Nonlinear Least-Squares Algorithm. ACM Trans. Math. Software, 1981, 7:348-368
- 4 Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. New York: Springer, 1994. 1-336
- Nagle D E et al. Coupled Resonator Model for Standing Wave Accelerator Tanks. The Review of Scientific Instruments, 1967. 38:1-11
- 6 Schriber S.O., Fitting of an Ordered Set of Model Frequencies. Master Thesis, Chalk River Nuclear Laboratories, 1970
- 7 Dennis I E et al. Algorithm 573, NL2SOL-An Adaptive Nonlinear Least-Squares Algorithm. ACM Trans. Math. Software, 1981, 7:369-383

Diagnosis of Individual Cell Frequencies in a Coupled Cavity **Chain by Genetic Algorithms**

NI Yi TONG De-Chun LIN Yu-Zheng

(Department of Engineering Physics, Tsinghua University, Beijing 100084, China)

Abstract Genetic algorithms (GAs) is used to diagnose individual call frequencies in a coupled cavity chain with no need of any probe insertion. The cell frequencies and couplings between the cells are determined in terms of the measured pass-band performance. It will simplify the tuning processes and make the tuning of the sealed cavity possible. The solution is cast as an optimization problem and GAs is used as a function optimizer to solve this problem. Moreover, in order to expedite the convergence, nonlinear least squares method is added as one kind of mutation into GAs, which makes GAs converge faster and improves the precision of the solution. The effectiveness of the new technique has been demonstrated through some numerical examples, and the results have also been compared with those of the conventional GAs.

Key words genetic algorithms, nonlinear least squares, coupled cavity chain, pass-band performance, individual cell frequency

第7期

Received 5 July 2000