奇奇核超形变带的 $\Delta I = 1$ 颤动*

吴崇试1)

(兰州重离子加速器国家实验室原子核理论中心 兰州 730000)

(北京大学物理系 北京 100871)

摘要 讨论了奇奇核超形变旋称伙伴带中的 $\Delta I = 1$ 颤动现象,通过 ab 拟合和改进的 ab 拟合指定了它们的自旋值.

关键词 超形变带 Δ1=1颤动 自旋指定 ab公式和改进的 ab 公式

超形变带的发现是核结构研究中的一个重要进展,它为我们检验各种核模型提供了 非常理想的条件.和正常形变带相比,超形变带的结构比较稳定,带内的级联跃迁较长而 又较少发生回弯,一些在正常形变带中并不明显的效应,在超形变带中就可能显现出来. 例如,在超形变带中表现出的全同带问题和 $\Delta I = 2$ 颤动(或称 $\Delta I = 4$ 分岔)问题等等,已经 引起广泛的注意.在文献 [1,2]中,又首先揭示出奇 A核旋称伙伴带的 $\Delta I = 1$ 颤动现象. 最近,在 $A \approx 190$ 区奇奇核超形变带的研究^[3]中,进一步具体讨论了^{192,194}TT 的 $\Delta I = 1$ 颤动问题.本文将继续这一讨论,简要地分析一下其它质量区中奇奇核超形变旋称伙伴带的 $\Delta I = 1$ 颤动问题.

先讨论 $A \approx 150$ 区.现有的奇奇核超形变带中,有两对旋称伙伴带,即¹⁵⁰Tb(1,2)^[4]和 ¹⁵²Tb(1,2)^[5].仿照文献 [1—3]中的做法,可以从它们的跃迁能量 $E_{\gamma}(I) \equiv E_{\gamma}(I + 2 \rightarrow I)$ 中提取

$$\Delta^2 E_{\gamma}(I) = \frac{1}{2} [E_{\gamma}(I) + E_{\gamma}(I-2)] - E_{\gamma}(I-1).$$
⁽¹⁾

图 1 中给出了这两对旋称伙伴带的 $\Delta^2 E_{\gamma}(I)$ 值.可以看到,¹⁵²Tb(1,2)两带没有明显的 ΔI = 1 颤动.与此相反,在¹⁵⁰Tb(1,2)中却存在非常强烈的 ΔI = 1 颤动.当 $I \approx 20$ —40 时, $\Delta^2 E_{\gamma}(I)$ 值线性地增大,由 40keV 达到 60keV 左右;当 I > 40 以后, $\Delta^2 E_{\gamma}(I)$ 值又逐渐减小. 正如文献 [3]中指出过的, $\Delta^2 E_{\gamma}(I)$ 值在小 /时的这种变化趋势,容易由奇奇核的能谱公式 得到解释.在考虑到旋称相关的高级修正后,奇奇核的能量可以表示成¹⁶

$$\Delta^{2} E_{\gamma}(I) = 12B(2I+1) + \dots + (-)^{I+1}2(2I+1)\{A_{\gamma} + 2[2I(I+1) + 5]B_{\gamma} + \dots\}.$$
 (3)

1998-11-13收稿

* 国家自然科学基金资助项目(19677203)

1) 中国科学院理论物理研究所客座

66-70

显然,当 I不太高时, $\Delta^2 E_{\gamma}(I)$ 值的确应当随 I增大而线性地增大.如果 B_2 与 A_2 异号,则当 I 足够大时,由于 B_2 项的作用增大,就会导致 $\Delta^2 E_{\gamma}(I)$ 值减小.

图 1 超形变带^{150,152}Tb 和^{144,148}Eu 的ΔI = 1 颤动
 ○和●分别表示旋称α = 0,1 时的Δ²E_i(I)值. I 值取自表 1.

在图 1 中还给出了¹⁴⁴Eu(B,C)和¹⁴⁸Eu(1,2)的 $\Delta^2 E_{\gamma}(I)$ 值.对于¹⁴⁴Eu(B,C)两带,由于 A_2 项的贡献较小(参见表 2),所以 $\Delta^2 E_{\gamma}(I)$ 随 I 的变化呈三次曲线的形式,在 I \approx 38 左右达 到最大;而后由于发生了带交叉,因而 $\Delta^2 E_{\gamma}(I)$ 表现出大幅度的突变.对于¹⁴⁸Eu(1,2)两 带, $\Delta^2 E_{\gamma}(I)$ 的振幅基本上呈直线,随 I 的增大而略有减小.这种变化趋势,其实正是相当 于¹⁵⁰Tb(1,2)中 $\Delta^2 E_{\gamma}(I)$ 达到最大值以后的情形.

这里要提到¹⁴⁴Eu的 B带,文献 [7]的表 I中列有两个能量(638.8keV)和强度完全相同 的相邻的γ跃迁.显然,要确认这两条能量完全相同的γ射线,至少需要在此能量下设门, 而在它的符合谱中观测到一条同样能量的谱线.然而该文对这两条跃迁并未作任何讨 论.因此,在上面的分析(以及后面的 *ab* 拟合)中,我们把它们仍然看成是一条γ跃迁.

为了进一步理解上面对 $\Delta^2 E_{\gamma}(I)$ 变化趋势的分析,同时也为了对这些超形变带作出自旋指定,不妨采用 ab 公式或改进的 ab 公式对跃迁能量进行拟合.这里,考虑到上面关于 奇奇核能谱 I(I + 1)展开的形式,改进的 ab 公式应该是

$$E(I) = a[\sqrt{1 + bI(I+1)} - 1] + (-)^{I}AI(I+1)[a, -b, I(I+1)], \quad A = ab/2.$$
(4)

显然,这里的 Aa_1 和 Ab_1 就相当于(3)式中的 – A_2 和 B_2 . 在拟合中采用 ab 公式或改进的 ab 公式的原因是为了减少参数(以提高拟合的灵敏度),同时又能适当地(至少部分地)包括 进 I(I + 1)的高级项的影响.

	$E_{\gamma}(I_0+2 \rightarrow I_0)/\text{keV}$	指定的自旋值///				
超形变带	×=	本文	СВМ	其 它		
¹⁵⁰ Tb(1)	596.8	22	23	$21^{[11]}, 24^{[14]}$		
(2)	662.5	23	22	24 ³⁾		
¹⁵² Tb(1)	823.0	39或40	40	$33^{[11]}, (31)^{[14]}$		
(2)	801.0	38或39	40	$32^{[11]}, (30)^{[14]}$		
¹⁴⁴ Eu(B)	506.9	14		19 ³⁾		
(C)	603.2	17		22 ³⁾		
¹⁴⁸ Eu(1)	747.7	29		24 ³⁾		
(2)	844.2	32		28 ³⁾		
¹³⁰ Pr(1)	623.0	16		(14) ^[9]		
(2)	661.0	17		(15) ^[9]		
132 Pr(1)	695.5	18		(15) ^[10]		
(2)	802.9	21		(18) ^[10]		

表1 奇奇核超形变旋称伙伴带的自旋指定(^{192,194} T)除外)

跃迁能量的实验值取自文献[4](¹⁵⁰ Tb),[5](¹⁵² Tb),[7](¹⁴⁴Lu),[8](¹⁴⁴ Lu),[9](¹³⁰ Pr)和[10](¹³² Pr).

表1中列出了这4对超形变带的自旋指定值.其中¹⁵²Tb(1,2)的自旋值,无论采用 ab 拟合或改进的 ab 拟合,均不能作出唯一的指定.需要注意,这4对旋称伙伴带中,只有 ^{150.152} Tb 的自旋值曾经用多种方法指定过.可以看到,本文定出的自旋值和推转 Bohr-Mottelson (CBM)模型的结果¹¹接近,但是,¹⁵²Tb 的自旋值,和吴成礼等的结果^[11]相 差较大.最近,吴成礼等²¹还指定了^{144.148}Eu 的超形变带自旋值,和本文的结果相差达(4-5) *b*.吴成礼等在指定¹⁵²Tb 和^{144.148}Eu 的自旋值时,采用的都是和选定基准超形变带比对 的办法.这种方法的可靠性较差.第一,作为比对的基准,超形变带¹⁵²Dy(1)的自旋值并 未能在实验中测定,而不同理论方法指定的自旋值也不相同;超形变带¹⁴³Eu(1)到正常形 变带间的跃迁虽已有实验测量^[12],但并未获得其它实验的支持^[13].第二,更重要的是, ¹⁴⁴Eu(B,C)和¹⁴⁸Eu(1,2)的第二类转动惯量和¹⁴³Eu 有明显不同的变化趋势.这里还要提 到,根据吴成礼等的结果,¹⁴⁸Eu(1,2)具有相同的旋称,它们并不是一对旋称伙伴带.

在表 1 中还列出了^{130,132}Pr 的结果.本文指定的自旋值比文献 [9,10]的建议值系统地 大(2--3) *h*.但是,正如文献 [9] 中指出的,从实验上对¹³⁰Pr 进行自旋指定面临两个困难: 第一,¹³⁰Pr 的正常形变带的自旋值尚属未知;第二,从超形变带馈人正常形变带的准确途 径(初末态)也未能确定.只要这些超形变带的确是好的转动带,那么,从能级间隔来看,

¹⁾ Zhou Shan-gui, Zheng Chun-kai, Hu Ji-min. Proc. CCAST (World Laboratory) Workshop (Beijing, March 10-14, 1997), 79:67

²⁾ Han X L, Wu C L. Nuclear Superdeformed Data Tables (3rd ed.) July 1997

本文所作的自旋指定就是更合理的.这里还要顺便提到,在这两对超形变带中,已测出的 跃迁条数还比较少,还难以判断是否存在明显的 $\Delta I = 1$ 颤动,因此在图 1 中并没有画出它 们的 $\Delta^2 E_s(I)$ 值.

表 2 中列出了 12 条超形变带的拟合参数.这里既有分别对每一个超形变带作 ab 拟合 而得到的参数值,也有用改进的 ab 公式(4)对每一对旋称伙伴带作拟合而得到的参数值, 包括¹⁵²Tb(1,2)的两种自旋指定值时的参数值.从表 2 可以看出,对于存在明显Δ*I* = 1 颤 动的 3 对超形变带,参数 a₁和 b₁的数值(绝对值)要明显大于另外 3 对超形变带.上面关于 图 1 中几对旋称伙伴带Δ²E₂(*I*)值变化趋势的讨论中,已经参考了这些参数值的具体大小.

	а	ь	$\mathcal{J}_0 = \hbar^2 / ab$	$a^2 b$	<i>a</i> 1	b_1	
超形变带	$(\times 10^4)/\text{keV}$	(×10 ⁻⁴)	$/\hbar^2 \text{MeV}^{-1}$	$(\times 10^4)/\text{keV}^2$	(×10 ⁻⁴)	(×10 ⁻⁷)	附注
¹⁵⁰ Tb(1)	-75.4920	-0.1667	79.447	-950.215			
(2)	111.5805	0.1218	73.603	1515.981			
(1,2)	-553.6693	-0.0236	76.436	-7243.557	-383.539	-36.561	
¹⁵² Tb(1)	-22.0640	-0.4424	102.441	-215.383			<i>I</i> ₀ =39
(2)	-22.4408	-0.4356	102.299	-219.365			<i>I</i> ₀ =38
(1,2)	-22.2486	-0.4391	102.371	-217.333	8.544	1.258	
(1)	-19.9055	-0.4770	105.335	-188.925			<i>I</i> ₀ =40
(2)	- 19.9054	-0.4771	105.305	-189.027			<i>I</i> ₀ =39
(1,2)	-19.9057	-0.4770	105.319	-189.003	-2.143	-0.088	
¹⁴⁴ Eu(B)	119.8196	0.1373	60.796	1970.858			
(C)	48.6663	0.3357	61.219	794.961			
(B, C)	69.5237	0.2358	61.001	1139.721	36.700	-22.274	
¹⁴⁸ Eu(1)	-35.8523	-0.3363	82.928	-432.334			
(2)	-48.3867	-0.2560	80.720	- 599.439			
(1,2)	-41.2754	-0.2961	81.810	- 504.530	140.918	11.545	
¹³⁰ Pr(1)	24.6050	0.7336	55.404	444.102			
(2)	29.1371	0.6174	55.593	524.112			
(1,2)	27.0386	0.6661	55,525	486.964	21.150	15.392	
¹³² Pr(1)	-90.4808	-0.1961	56.354	-1605.567			
(2)	-174.0253	-0.1023	56.169	- 3098.239			
(1,2)	-118.8966	-0.1495	56.262	-2113.266	-16.847	-12.158	n sur denti

表2 奇奇核超形变旋称伙伴带的拟合参数(192.194 TI除外)

综上所述,本文讨论了 $A \approx 190$ 区以外的 6 对旋称伙伴带,其中的 3 对中存在明显的 $\Delta I = 1$ 颤动.利用 ab 公式或改进的 ab 公式,给出了这 6 对旋称伙伴带的自旋指定.当 然,在本文的分析中,并没有扣除跃迁能量振荡起伏的影响.可以预料,在扣除这种影响 后, $\Delta^2 E_{\gamma}(I)$ 的变化将会更加规则,但是总体趋势不会改变.

奇奇核中是否存在明显的Δ*I* = 1 颤动,当然与原子核的内部结构、特别是两个奇核子 所处的状态有关. (2)式中的旋称相关项,就可能来源于集体哈密顿量中的高级微扰项, 如 $I_+I_+j_+j_+ + I_-I_-j_-j_-$ 项,它在 *K* = 1 时的平均值就具有(-)^{*I*}A₂*I*(*I* + 1)的形式, A₂的大 小与两个奇核子所处的状态密切相关. 至于(-)^I B₂[<math>I(I + 1)]²形式的项则来自更高级的 微扰. 特别是,奇奇核中还存在不可忽视的交换力,它还可以产生其它形式的旋称相关 项. 所以,研究奇奇核超形变带的 $\Delta I = 1$ 颤动,有助于深入了解超形变带的内部结构,也 有助于正确了解奇奇核转动带能谱的规律性. 从原则上说来,在奇奇核的正常形变带中, 也应当存在 $\Delta I = 1$ 颤动. 事实上,我们的确可以找到这样的事例,例如奇奇 Tm, Lu和 Ta 核中的许多正常形变带. 限于篇幅,我们将另文讨论.</sup>

参考文献 (References)

- WU ChongShi. High Energy Phys. and Nucl. Phys. (in Chinese), 1997, 21:621-626 (吴崇试. 高能物理与核物理,1997, 21:621-626)
- 2 WU C S, ZHOU Z N. Phys. Rev., 1997, C56:1814-1820
- 3 WU ChongShi, ZHOU ZhiNing. High Energy Phys. and Nucl. Phys. (in Chinese), 1999, 23:1209-1215 (吴崇试,周治宁. 高能物理与核物理, 1999, 23:1209-1215)
- 4 Fallon P, Beausang C W, Asztalos S et al. Phys. Rev., 1995, C52:93-98
- 5 de France G, Haas B, Ragnarsson I et al. Phys. Lett., 1994, B331:290-295
- 6 Bohr A, Mottelson B R. Nuclear Structure. Vol. II. Nuclear Deformations. New York: Benjamin, 1973. 33
- 7 Hackman G, Mullins S M, Haslip D et al. Phys. Rev., 1997, C55:1101-1107
- 8 Kharraja B, Garg U. Phys. Rev. Lett., 1998, 80:1845-1848
- 9 Brown T B, Pfohl J, Riley M A et al. Phys. Rev., 1997, C56: R1210-1214
- 10 Hartley J D, Pfohl J, Riley M A et al. Phys. Rev., 1997, C55: R985-989
- 11 HAN X-L, WU C L. At. Data Nucl. Data Tables, 1996, 63:117-186
- 12 Ataç A, Piiparinen M, Herskind B et al. Phys. Rev. Lett., 1993, 70:1069-1072
- 13 Lerma F, LaFosse D R, Devlin M et al. Phys. Rev., 1997, C56: R1671-1674
- 14 Singh B, Firestone R B, Chu S Y F. Nucl. Data Sheets, 1996, 78:1-218

$\Delta I = 1$ Staggering in Doubly Odd Superdeformed Nuclei^{*} WU ChongShi¹⁾

(Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China) (Department of Physics, Peking University, Beijing 100871, China)

Abstract The $\Delta I = 1$ staggering is investigated for the superdeformed bands observed in the doubly odd nuclei ^{150, 152} Tb, ^{144, 148} Eu and ^{130, 132} Pr. The spin values of these bands are assigned from the *ab*- and modified *ab*-fitting. The possible mechanism and the inherent physics of the $\Delta I = 1$ staggering are outlined in the case of doubly odd nuclei.

Key words superdeformed band, $\Delta I = 1$ staggering, spin assignment, *ab*-expression and its modification

Received 13 November 1998

^{*} Project (19677203) Supported by National Natural Science Foundation of China

¹⁾ Guest Researcher of the Institute of Theoretical Physics, the Chinese Academy of Science