重子-反重子系统的"么正能带"结构

干滩滩 张禹顺 李扬国 (中国科学院高能物理研究所)

陈晓天 阮图南 (中国科学技术大学)

鞷

本文提出,在重子-反重子系统中,如以自旋 $\frac{1}{2}$ 的质子、中子和 Λ 超子作为 SU(6) 群的基础粒子,则 $B\bar{B}$ 系统可按 SU(6) 群分类(分为赝标 $B\bar{B}$ 系统和矢 量 BB 系统)。BB 系统的能谱具有 SU(6)"么正能带"和"奇异相似态"两个特 点. 对自旋为1的 pp 实验能谱进行了分析, 计算表明 pp 系统存在 SU(6) "么 正能带"; $p\bar{p}$ 系统与 $n\bar{p}$ 系统以及奇异数 $S=\pm 1$ 的 $B\bar{B}$ 系统之间,存在"奇异 相似态"关系。

一、引言

众所周知,在基本粒子复合模型 $^{(1)}$ 的基础上,考虑自旋效应,导致从SU(3)群扩充到 SU(6) 群[1], 在中、低能情况下, 该理论取得了很大成功。

本文在文献[1,3,4]的基础上,用类似文献[2]的方法,讨论重子-反重子系统的SU(6)么正对称性. 认为自旋 $\frac{1}{2}$ 的质子、中子和 Λ 粒子构成 SU(6) 群的基础粒子. 并假设:

- 1. 在中低能情况下, 正、反重子之间仅通过强作用形成重子-反重子系统. 不考虑重 子、反重子内部的"超强"作用,即不考虑胶子对正-反重子系统的影响。
 - 2. 强作用是 SU(6) 不变的,依赖自旋的相互作用是 $SU(2) \otimes SU(3)$ 不变的,
 - 3. A 粒子与核子间的"原始"质量差,导致 SU(3) 对称性破坏.

我们将根据上面的假设,讨论重子-反重子系统的 SU(6) 么正对称性,并与 $p\bar{p}$ 实验 进行比较.

二、重子-反重子系统

重子 SU(6) 波函数为

$$\phi_A = \chi_{\tau} \phi_{\alpha}, \quad A = 1, 2, \dots, 6; \quad \gamma = 1, 2; \quad \alpha = 1, 2, 3$$
 (2.1)

其中 2, 是重子自旋波函数

$$\chi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \quad \chi_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$
 (2.2)

本文 1979年11月26日收到。

φ_a 是重子 SU(3) 波函数

$$\phi_1 = p = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \quad \phi_2 = n = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \quad \phi_3 = \Lambda = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$
 (2.3)

重子系统和反重子系统的力学量如电荷 Q, 奇异量子数 S, 同位旋 T, 重子数 B 和超荷 Y 等的定义及量子数见文章 [3,4].

当重子和反重子组成正反重子系统时,其波函数可用二阶混合张量 ϕ^{B} 表示

式 (2.4) 可约化为 SU(6) 单态与 35 重态之和

$$\psi_{A}^{B} = \chi_{\tau} \chi_{\tau}^{+} \phi_{\alpha} \phi_{\beta}^{+} = \frac{1}{6} \delta_{\tau}^{t} \delta_{\alpha}^{\beta} \sigma_{0} (p\bar{p} + n\bar{n} + \Lambda \bar{\Lambda})$$

$$+ \frac{1}{2} \delta_{\tau}^{t} \sigma_{0} P_{\alpha}^{\beta} + \frac{1}{2} (\sigma_{i})_{i\tau} \sigma_{i} V_{\alpha}^{\beta},$$

$$(\gamma, s, t = 1, 2; \alpha, \beta, \gamma = 1, 2, 3)$$

$$(2.5)$$

其中 σ_0 和 σ_1 分别代表系统自旋为 0 和 1 的波函数。第一项是 SU(6) 单态,自旋为 0; 第二项是 SU(6)35 重态中自旋为 0 的八重态,其中 P_0^R 为赝标正反重子系统 SU(3) 波函数。

$$P_{\alpha}^{\beta} = \phi_{\alpha}\phi_{\beta}^{+} - \frac{1}{3}\delta_{\alpha}^{\beta}\phi_{\gamma}\phi_{\gamma}^{+}$$

$$= \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & (p\bar{n}) & (p\bar{\Lambda}) \\ (n\bar{p}) & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & (n\bar{\Lambda}) \\ (\Lambda\bar{p}) & (\Lambda\bar{n}) & -\frac{2}{\sqrt{6}} \eta \end{pmatrix}, \qquad (2.6)$$

中

$$\pi^0 = \frac{(p\bar{p}) - (n\bar{n})}{\sqrt{2}},\tag{2.7}$$

$$\eta = \frac{(p\bar{p}) + (n\bar{n}) - 2(\Lambda\bar{\Lambda})}{\sqrt{6}}, \qquad (2.8)$$

式 (2.5) 第三项是 SU(6)35 重态中自旋为 1 的 9 重态。 其中 V_a^B 为矢量正-反重子系统 SU(3) 波函数:

$$V_a^{\beta} = \phi_a \phi_{\beta}^+$$

$$= \begin{pmatrix} \frac{\rho}{\sqrt{2}} + \frac{\phi}{\sqrt{6}} + \frac{\omega}{\sqrt{3}} & (p\bar{n})^* & (p\bar{\Lambda})^* \\ (n\bar{p})^* & \frac{-\rho}{\sqrt{2}} + \frac{\phi}{\sqrt{6}} + \frac{\omega}{\sqrt{3}} & (n\bar{\Lambda})^* \\ (\Lambda\bar{p})^* & (\Lambda\bar{n})^* & -\frac{2}{\sqrt{6}} \phi + \frac{\omega}{\sqrt{3}} \end{pmatrix}, (2.9)$$

其中

$$\rho = \left(\frac{p\bar{p} - n\bar{n}}{\sqrt{2}}\right)^*,\tag{2.10}$$

$$\phi = \left(\frac{p\bar{p} + n\bar{n} - 2\Lambda\bar{\Lambda}}{\sqrt{6}}\right)^*,\tag{2.11}$$

$$\omega = \left(\frac{p\bar{p} + n\bar{n} + \Lambda\bar{\Lambda}}{\sqrt{3}}\right)^*. \tag{2.12}$$

请注意,为书写方便,式(2.6)和(2.9)中的某些量借用介子符号来标记,一般用(BB)和(BB)*分别代表赝标和矢量正-反重子系.

在无穷小变换下

$$\begin{aligned}
\phi_A \to \phi_A' &= u\phi_A = \psi_A + i(\theta_a\sigma_a + \theta_i\lambda_i + \theta_{ai}\sigma_a\lambda_i)\phi_A, \\
\bar{\phi}_B \to \bar{\phi}_B' &= \psi_B \bar{u} = \bar{\phi}_B + i\bar{\phi}_B(\theta_a\bar{\sigma}_a + \theta_i\bar{\lambda}_i + \theta_{ai}\bar{\sigma}_a\bar{\lambda}_i),
\end{aligned} (2.13)$$

其中

$$u = e^{i(\theta_{\alpha}\sigma_{\alpha} + \theta_{j}\lambda_{j} + \theta_{\alpha j}\sigma_{\alpha}\lambda_{j})}, \quad (\alpha = 1, 2, 3; \ j = 1, 2, \cdots 8)$$

$$(2.14)$$

 σ_a , λ , 分别是泡利矩阵和盖尔曼矩阵. 于是

$$\psi_{A}^{B} \to \psi_{A}^{B'} = u\psi_{A}\bar{\psi}_{B}\bar{u} \doteq \psi_{A}^{B} + i[\theta_{a}(\sigma_{a} + \bar{\sigma}_{a}) + \theta_{i}(\lambda_{i} + \bar{\lambda}_{i})
+ \theta_{ai}(\sigma_{a}\lambda_{i} + \bar{\sigma}_{a}\bar{\lambda}_{i})]\psi_{A}^{B} = U\psi_{A}^{B}$$
(2.15)

式中算符 σ_a , λ_i , $\sigma_a \lambda_i$ 往后作用,算符 $\bar{\sigma}_a$, $\bar{\lambda}_i$, $\bar{\sigma}_a \bar{\lambda}_i$ 朝前作用。其中

$$U = u \otimes \bar{u}, \tag{2.16}$$

即变换U是两个SU(6)变换的直乘,正一反重子系力学量定义如下:

$$Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \dotplus \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad T_1 = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \dotplus \frac{1}{2} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$T_2 = \frac{1}{2} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \dotplus \frac{1}{2} \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad T_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \dotplus \frac{1}{2} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \dotplus \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = 0, \quad Y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \dotplus \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad (2.17)$$

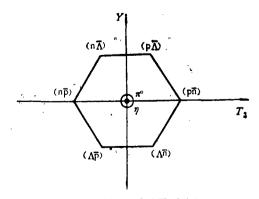


图 1 赝标正-反重子系统权图

$$S_{1} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \dotplus \frac{1}{2} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \quad S_{2} = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \dotplus \frac{1}{2} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix},$$
$$S_{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \dotplus \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

对正-反重子系,盖尔曼-西岛规则成立

$$Q = T_3 + \frac{1}{2} Y. {(2.18)}$$

表 1、2 给出赝标及矢量正-反重子系量子数. 图 1、2 给出相应的插图.

	(p n)	$\left(\frac{p\tilde{p}-n\tilde{n}}{\sqrt{2}}\right)$	(āu)	(K q)	(Ān)	(A))	(Añ)	$\left(\frac{p\bar{p}+n\bar{n}-2\Lambda\bar{\Lambda}}{\sqrt{6}}\right)$
Q	1	0	1	1	0	-1	0	0
<i>T</i> ·	1	1	1	$\frac{1}{2}$	1/2	1/2	1/2	0
T _{3.}	1	0	-1	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	1/2	0
Y	0	0	0	1	ì	-1	-1	0

表 1 赝标正-反重子系统量子数

表 2	矢量正-	- 后 音	子玄	体署	子数
411. ~	~==		3 25%	216.00	

	(p n)*	$\left(\frac{p\vec{p}-n\vec{n}}{\sqrt{2}}\right)^*$	(n ỹ)*	(p Ā)*	(nĀ)*	(Ap)*	(/n)*	$\left(\frac{p\bar{p}+n\bar{n}-2A\bar{A}}{\sqrt{6}}\right)^*$	$\left(\frac{p\bar{p}+n\bar{n}+A\bar{A}}{\sqrt{3}}\right)^*$
Q	1	0	-1	1	0	-1	0	0	0
T	1	1	1	1/2	1/2	1/2	1/2	0	0
Т,	1	0	-1	1/2	$-\frac{1}{2}$	$-\frac{1}{2}$	1/2	0	0
Y	0	0	0	1	1	-1	-1	0	0

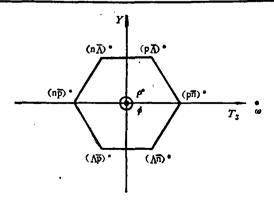


图 2 矢量正-反重子系统杈图

三、质量关系和能谱结构

质量关系 由于 Λ 粒子与核子之间存在"原始"质量差,导致 SU(6) 么正对称性 T_3 破坏。正一反重子系质量公式可写为

$$m^2(T, Y, S) = m_0^2 + a_1 \left[T(T+1) - \frac{1}{4} Y^2 \right] + a_2 S(S+1).$$
 (3.1)

式中 m_0^2 , a_1 , a_2 是表示常数; T, Y, S 分别是 SU(6) 不可约表示的同位旋,超荷及自旋。

S=0,赝标 $B\bar{B}$ 系统质量公式为

$$m^{2}(T, Y, S = 0) = m_{0}^{2} + a_{1} \left[T(T+1) - \frac{1}{4} Y^{2} \right],$$
 (3.2)

质量关系为

$$m_{(P\bar{n})}^2 = m_{(n\bar{p})}^2 = m_{(n\bar{p})}^2 = m_{\pi^0}^2,$$

$$m_{(P\bar{B})}^2 = m_{(n\bar{B})}^2 = m_{(A\bar{B})}^2 = m_{(A\bar{B})}^2 = m_{\kappa}^2, \quad 4m_{(P\bar{A})}^2 = m_{(P\bar{B})}^2 + 3m_{\eta}^2;$$
 (3.3)

S=1,矢量 $B\bar{B}$ 系统质量公式为

$$m^2(T, Y, S = 1) = m_0^2 + a_1 \left[T(T+1) - \frac{1}{4} Y^2 \right] + 2a_2;$$
 (3.4)

质量关系为

$$m_{(p_{\bar{n}})}^{2} * = m_{(n\bar{p})}^{2} * = m_{(p_{\bar{n}})}^{2} * = m_{\rho}^{2},$$

$$m_{(p_{\bar{n}})}^{2} * = m_{(n\bar{n})}^{2} * = m_{(A\bar{p})}^{2} * = m_{(A\bar{p})}^{2} * = m_{\kappa}^{2}, \quad 4m_{(p_{\bar{n}})}^{2} * = m_{(P\bar{p})}^{2} * + 3m_{\phi}^{2}$$
(3.5)

由于赝标 $B\bar{B}$ 系与矢量 $B\bar{B}$ 系同属 SU(6) 的 35 维表示,故有 T_3^3 质量差关系和自旋质量差关系

$$m_{(P\overline{A})}^{2} * - m_{(P\overline{A})}^{2} * = m_{(P\overline{A})}^{2} - m_{(P\overline{A})}^{2}, \quad m_{\phi}^{2} - m_{(P\overline{A})}^{2} * = m_{\eta}^{2} - m_{(P\overline{A})}^{2},
m_{\phi}^{2} - m_{(P\overline{A})}^{2} * = m_{\eta}^{2} - m_{(P\overline{B})}^{2}, \quad m_{(P\overline{B})}^{2} * - m_{(P\overline{A})}^{2} * - m_{(P\overline{A})}^{2} * - m_{\eta}^{2} = m_{\phi}^{2} - m_{\eta}^{2}.$$
(3.6)

物理态与 SU(6) 纯态的关系,对于自旋为 0 的态有

$$(p\bar{p}) = \frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta + \frac{1}{\sqrt{3}} \chi^{0},$$

$$(n\bar{n}) = -\frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta + \frac{1}{\sqrt{3}} \chi^{0},$$

$$(\Lambda \bar{\Lambda}) = -\frac{2}{\sqrt{6}} \eta + \frac{1}{\sqrt{3}} \chi^{0}.$$
(3.7)

其中

$$\chi^{0} \equiv \frac{1}{\sqrt{3}} \left(p\bar{p} + n\bar{n} + \Lambda\bar{\Lambda} \right), \tag{3.8}$$

 χ^0 是 SU(6) 单态,自旋为零.

对自旋为1的态有:

$$(pp)^* = \frac{1}{\sqrt{2}} \rho + \frac{1}{\sqrt{6}} \phi + \frac{1}{\sqrt{3}} \omega,$$

$$(n\bar{n})^* = -\frac{1}{\sqrt{2}} \rho + \frac{1}{\sqrt{6}} \phi + \frac{1}{\sqrt{3}} \omega,$$

$$(\Lambda \bar{\Lambda})^* = -\frac{2}{\sqrt{6}} \phi + \frac{1}{\sqrt{3}} \omega.$$
(3.9)

利用质量关系可以求出 SU(3) 八重态的质量;利用下面质量混合关系[3]

$$m_{\rho}^2 = b$$
, $m_{\phi}^2 = \frac{1}{3}b + \frac{2}{3}c$, $m_{\omega}^2 = \frac{2}{3}b + \frac{1}{3}c$. (3.10)

可得出单态 4 的质量平方为

$$m_{\omega}^2 = \frac{m_{\rho}^2 + m_{\phi}^2}{2}. (3.11)$$

BB 系统的能谱结构 重子 B 和反重子 B 通过强作用可以组成 9 种 BB 系统 pp, nn, $\Lambda \Lambda$, pn, np, p Λ , Λ p, n Λ 和 Λ n. 在考虑自旋后,正-反重子系有 36 种物理状态 (自旋为 0 有 9 种,自旋为 1 有 27 种)这些态的群分类可用图 3 表示.

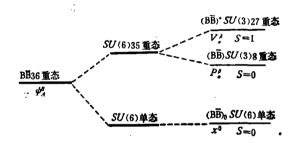


图 3 BB 系统能谱群分类示意图

 $(BB)_0$ 表示 SU(6) 单态正-反重子系,(BB) 和 $(BB)^*$ 表示赝标和矢量正-反重子系。

BB 系统能谱具有两个明显特点: "么正能带"结构和"奇异相似态"结构。

所谓"么正能带"结构,就是在 SU(3) 不变的强作用下,式 (3.7) 中 $_{\omega}^{\rho}$, $_{\eta}$; 或 (3.9) 中的 $_{\rho}$, $_{\phi}$, $_{\omega}$ 所代表的态是退化的。 但在 $_{\tau}^{\gamma}$ 破坏下,这些能级将分裂,形成赝标和矢量 $_{\tau}^{SU(3)}$ "么正对称能带",同一个"么正能带"属于同一个 $_{\tau}^{SU(3)}$ 不可约表示,其外部量子数一样。仅标志 $_{\tau}^{SU(3)}$ 内部对称性的量子数不同。

根据质量关系 (3.3) 和 (3.5) 可知 BB 系统的"奇异相似态"能谱可分为两类 8 种: 赝标 BB 系统: 第 1 种 $(p\bar{p})$, $(n\bar{p})$; 第 3 种 $(p\bar{\Lambda})$, $(n\bar{\Lambda})$, $(\Lambda\bar{p})$, $(\Lambda\bar{n})$;

第2种 (pā), (nē); 第4种 (ΛΛ).

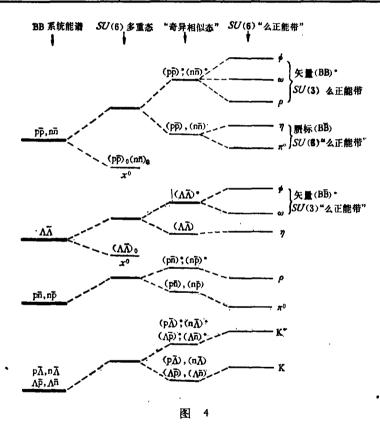
矢量 BB 系统: 第5种 $(p\bar{p})^*$, $(n\bar{n})^*$; 第7种 $(p\bar{\Lambda})^*$, $(n\bar{\Lambda})^*$, $(\Lambda\bar{p})^*(\Lambda\bar{n})^*$;

第6种 (pī)*, (nē)*; 第8种 (ΛΛ)*.

SU(3) 对称性的 T_3^3 破坏,使得"奇异相似态"中 $p\bar{p}$, $n\bar{n}$ 和 $A\bar{A}$ 能级发生分裂,使 $B\bar{B}$ 系能谱呈现"么正能带"。表 3 给出同一"奇异相似态中能谱"及"么正能带"关系。图 4 给出各类 $B\bar{B}$ 系统能谱结构示意图。

由图 4 可以看出各类谱均有 SU(6) "么正能带"结构:

				AX 3								
	腰标 (BB) 3	系统 S = 0		. 矢量 (BB)* 系统 S = 1								
1	2	3	4	5	6	7	8					
(p p), (nn)	(pā), (n̄)	$(p\bar{A}),(\Lambda\bar{p}) \\ (n\bar{A}),(\Lambda\bar{n})$	(4Ā)	(p p)*, (nn)*	(pā)*, (nē)*	$(p\bar{A})^*, (A\bar{p})^*$ $(n\bar{A})^*, (A\bar{n})^*$	(/\bar{\lambda})*					
n		,		φ		*	φ					
7	,	к	,	ω			ω					
π ⁰	πο			ρ	ρ							



- 1. pp, nn 系统能谱。由两个 SU(3) "么正能带"构成,每带由 5 条能级 ϕ , ω , ρ , η 和 π^0 构成。
 - $2.\Lambda\Lambda$ 系统能谱。由 3 条能级 ϕ , ω , η 构成 SU(6) "么正能带"。
 - 3. np 和 pn 系统能谱。由两条能级 ρ, π⁰ 组成 SU(6) "么正能带"。
 - 4. $p\bar{\Lambda}$, $n\bar{\Lambda}$, $\Lambda\bar{p}$ 和 $\Lambda\bar{n}$ 系统能谱. 由两条能级 K* 和 K 组成 SU(6) "么正能带".

四、结果和讨论

目前有关 BB 系统的实验正在开展之中,已获得丰富的 pp 资料,而 np 系统,奇异

数 $S = \pm 1$ 的 $B\bar{B}$ 系统,甚至 $A\bar{A}$ 系统的能级都有报道 [5-20],初步展示 $B\bar{B}$ 系统实验谱. 下面仅就自旋为 1 的 $B\bar{B}$ 系统的有关资料(实验尚缺自旋为 0 的资料)进行初步计算与讨论.

根据矢量 BB 系统质量关系(3.5)及(3.11)利用 pp 系统(自旋为1)能级资料,进行了计算,理论结果与实验比较见表 4 和图 5.

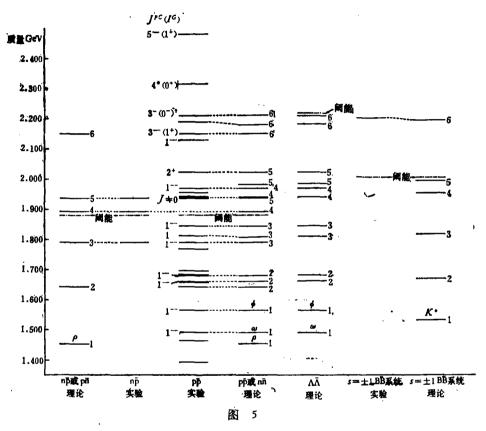


表 4 BB 系统自旋 = 1 "么正能带"(单位: GeV.)

.奇		ρ (1	(=1)			ω (Ι	= 0)			φ (I :	= 0)		κ	κ^* $(S=\pm 1)$			
奇异相似态	实	验	理	论	实	验	理	论	实	验	理	论	实	验	理、	论	
似态	J ^{PC}	М	М	JPC	JPC	М	М	JPC	JPC	М	М	JPC	JPC	M	М	JPG	
1			1.425	1-	1-	1.495	輸	人	1-	1.562	输	人			1.529	1-	
2		1.646	1.648	1-	1-	1.662	输	入	1-	1.676	輸	人			1.669	1-	
3	1-	1.792	輸	人	1	1.812	1.806	1-	1	1.820	输	<u></u> Х			1.813	1-	
4		1.897	输	人			1.933	1	1	1.968	輸	7			1,951	1-	
5	<i>J</i> ≒0	1.932	输	人			1.977	2+	2+	2.020	輸	人			1.998	2+	
6	3	2.150	输	人.		2.185	2.177	3	? 3-(0+	2.204	輸	人	2	.200	2.191	3-	

从表 4 和图 5 可以看出

1. $p\bar{p}$ 系统(自旋为 1) 能谱存在 SU(6) "么正能带"结构. 根据目前资料, $p\bar{p}$ 系统有 6 个以上"么正能带",每个能带由 3 条能级组成. 这样可以很好地解释大部分 $p\bar{p}$ 系统能级 (M < 2.300 GeV).

2. $p\bar{p}$ 系统与奇异数 $S=\pm 1$ 的 $B\bar{B}$ 系统间可能存在"奇异相似态"关系。 这可由根据(3.5)式算出的 M=2.191 GeV $J^P=3^-$ 这个态与实验奇异数 $S=\pm 1$ 的态 M=2.200 GeV. 相近看出,可由 $p\bar{p}$ 能级推出奇异数 $S=\pm 1$ 相似态的能级。

3. pp̄ 系统与 np̄ 系统存在"奇异相似态"关系. 由 (3.3), (3.5) 式可看出, np̄ 系统与 pp̄ 系统中同位旋T=1 的态质量相同. 实验上 np̄ 系统能级有 3 条 $M=1.932\,\text{GeV}$, $M=1.897\,\text{GeV}$, $M=1.794\,\text{GeV}$. 在 pp̄ 系统,实验上确有相应的能级, $M=1.932\,\text{GeV}$, $M=1.792\,\text{GeV}$. 如果实验准确,能得到相应态的量子数相同,则是对 (3.3) 和 (3.5) 式的有力检验.

由于目前实验上的困难,有些能级测不准,更有许多能级的 $J^{PC}(I^G)$ 没有定下来,这使对现有实验的分析只能是初步的.显然,随着实验的进展和完善,表 4 数据将变动,"奇异相似态"数目及"么正能带"中能级的数值都可发生变化,(需用新实验重新计算).但是,BB 系统能谱的"么正能带"和"奇异相似态"这两个特点是可能存在的.

通过以上讨论可以看出, $B\bar{B}$ 系统能谱可从两方面分析;一是通过纵向关系——"么正能带"结构,把同一类型的 $B\bar{B}$ 系能级联系起来,通过自旋质量差关系,把不同自旋的 $B\bar{B}$ 系统联系起来。 二是通过横向关系——"奇异相似态"结构,把不同类型的 $B\bar{B}$ 系能级联系起来。 这样,利用 $p\bar{p}$ 系能级就能给出相应的 $n\bar{n}$, $\Lambda\bar{\Lambda}$ $p\bar{\Lambda}$ $(n\bar{\Lambda},\Lambda\bar{p},\Lambda\bar{n})$, $n\bar{p}(p\bar{n})$ 等系统的能级。 反过来,利用 $p\bar{n}$, $\Lambda\bar{\Lambda}$ 或 $p\bar{n}$, $S=\pm 1$ 的 $B\bar{B}$ 系统能级,也可给出相应的 $p\bar{p}$ 等系统的能级。 这就为判断实验能级提供了参考。

总之,利用 SU(6) 对称性分析正—反重子系统,可以得到与实验谱相当一致的结果。这表明在含有 p, n, Λ 的奇特核中,自旋效应该考虑,从 SU(3) 扩充到 SU(6) 与实验更符合。 为对这一理论做深入地检验,我们期待实验在纵向和横向两方面继续发展,给出能级的 $J^{PC}(I^G)$ 等量子数。 同时加强对 $n\bar{p}$, $\Lambda\bar{\Lambda}$ 及奇异数 $S=\pm 1$ 的 $B\bar{B}$ 系统的实验测量,这对分析 $p\bar{p}$ 系统能级和建立完整的 $B\bar{B}$ 系统能谱都是有益的。

最后需要指出,本文没有讨论 $B\bar{B}$ 系统中,不同的 SU(6) "么正能带"之间的联系,也未讨论能级宽度等问题。这些都是有兴趣的问题。 都可以在 $B\bar{B}$ 系统能谱分析的基础上进行讨论。

参考文献

- E. Fermi and C. M. Yang, Phys. Rev., 76(1949), 1739; S. Sakate, Prog. Theor. Phys., 16(1956), 686; M. Gell-Mann and Y. Neeman, The Eight fold Way, 1964.
- [2] B. Sakita, Phys. Rev., 136B(1964), 1756; F. Glirsey and L. A. Radicati, Phys. Rev. Lett., 13 (1964), 173.
- [3] 陈晓天、阮图南、张禹顺、李扬国,高能物理与核物理,4(1980),445。
- [4] 张禹顺、王潍潍、李扬国、陈晓天、阮图南,高能物理与核物理5(1980),149。
- [5] 曹谠文, 1979 年私人通信。
- [6] P. G. Pavlopoulus et al., Phys. Lett., 72B(1978), 415.
- [7] L. Gray et al., Phys. Rev. Lett., 34(1975), 1491.
- [8] T. Kalogeropoulas et al., Phys. Rev. Lett., 34(1975), 1047.

- [9] Ambrosio Frascati LNF-77/24 (P) Preprint (1977).
- [10] A. S. Carroll et al., Phys. Rev. Lett., 32(1974), 247.
- [11] V. Chaloupka et al., Phys. Lett., 61B(1976), 487.
- [12] L. Montanet in Proc. of V International Conf. on Experimental Meson Spectroscopy, Boston 29-30 April, (1977); CERN/EP/Phys., 77-22 (1977).
- [13] S. Ozaki, Proc. 19th International Conf. on High Energy Physics, A5 Hadron Spectroscopy, p. 101, 1978, Tokyo.
- [14] A. Benvenuti et al., Phys. Rev. Lett., 27 (1971), 183.
- [15] A. Carter et al., Phys. Lett., 67B(1977), 117; Rutherford Lab. Preprint RL/78/032(1978), IV Europeran Antiproton Symp. Strasbourg, June (1978).
- [16] P. Benkeiri et al., Phys. Lett., 68B(1977), 483;
- [17] O. Braun et al., Phys. Lett., 60B(1976), 481.
- [18] C. Avaugelista et al., Phys. Lett., 72B(1977), 139.
- [19] A. Apostolakis et al., Phys. Lett., 66B(1977), 185.
- [20] O. Baloshin, Proc. 19th International Conf. on High Energy Physics, 1978, Tokyo, p. 1049.

THE "UNITARY ENERGY BAND" STRUCTURE IN THE BARYON-ANTIBARYON SYSTEM

WANG WEI-WEI

(Institute of Theoretical Physics, Academia Sinica)

ZHANG YU-SHUN LI YANG-GUO

(Institute of High Energy Physics Academia Sinica)

CHEN XIAO-TIAN RUAN TU-NAN

(University of Science and Technology of China)

ABSTRACT

In the present paper a picture of the baryon-antibaryon system is proposed. If proton, neutron and Λ hyperon with spin ½ form the SU(6) basic particles, then the baryon-antibaryon system must be classified by the SU(6) group (It can be classified into pseudoscalar $B\overline{B}$ system and vector $B\overline{B}$ system). The spectrum of the $B\overline{B}$ system has two characteristics: The "Unitary energy band" and the "strangeness analogy state". In this paper the experimental spectrum of the $P\overline{P}$ system with spin 1 and the calculation show that there exist the SU(6) "Unitary energy band" in the $P\overline{P}$ system and exist the "strangeness analogy state" between the $P\overline{P}$ system and other $B\overline{B}$ systems such as $n\overline{p}$ system or BB systems which have strangeness $S=\pm 1$.

附 1 BB 系统能级实验资料

质 量 (GeV/C²)	宽 度 (MeV/C²)	$J^{pc}(I^G)$	BB类型	文献	质量 (GeV/C²)	宽 度 (MeV/C²)	$J^{PC}(I^G)$	BB 类型	文献
1.395	€15		₽ ō	[5]	1.936	9	2++(0+)	₽ p	[11,20]
1.456	34		₽ ō	[6]	1.940	~60	2++或4++(1)	₽₽	[12,20]
1.495	≤ 5	1	₽ p	[5]	1.954	≤10		р Б	[13]
1.562	€190	1	p ⊽	[5]	1.968	~35	1	₽ ō	[14]
1.646	≤ 15		p p	[5]	2.020	~24	2+	p p ̄	[13,16,17]
1.660	21		p ē	[6]	2.130	~30	1	₽ ঢ়	[5]
1.662	≃25	1	₽ 5	[5]	2.150	~200	3(1+)	₽ ঢ়	[15]
					2.185	~136			[12]
1.676	≃170	1	p ō	[5]	2.204	~16	3-	₽₽̄	[16,20]
1.684	€15		₽ p	[5]	2.310	~210	4+(0+)	₽ ₱	[16]
1.693	19	,	₽ ō	[6]	2.480	~275	5(1+)	₽ ₱	[15]
1.769	≃53		₽ 5	[5]	2.850	€39	(0)	₽ p	[18,19]
1.792	≃79	1	₽ ō	[5]	2.950	€15		₽Ђ	[18]
1.794	≤ 7	1	np	[7]	3.050	€20		₽ p	[18,19]
1.812	34	1	₽₽	[9]	2.200	~250		$S = \pm 1$	[12]
1.820	~30	1	₽Ð	[5]	2.600	<18		$s = \pm 1$	[12]
1.897	€20		пij	[9]	2.800			$?S = \pm 1$	[12]
1.932	9	(1)	₽ p	[10]	3.050			7S = ±1	[12]
1.932	4.5	$J \rightleftharpoons 0 (1)$	пij	. [8]	3.430	< 45	!	ΛĀ	[13]

附 2

BB 系统的字称、电荷共轭、G字称、总角动量

$$P = (-1)^{L+1}, \quad C = (-1)^{L+S}, \quad G = (-1)^{L+S+I}, \quad J = L + S$$

下面分别列出自旋 S=0 和自旋 S=1,两种情况下 $B\bar{B}$ 系统对应的态。(备分析实验用)

s	L	J	I	P	С	G	IG	J ^{PC}	₿₿	s	L	J	I	P	с	G	I^G	J ^{PC}	В В
0	0	0	0 1	_	+	+	0+ 0-	0-+	¹S ₀	1	2	1	0 1	_	_	-+	0- 1+	1	³ D ₁
0	1	1	0 1	+	_	- +	0- 1+	1+-	$^{1}P_{1}$			2	0 1	-	-	-	0- 1+	2-	3D2
0	2	2	0 1	-	+	+	0+ 1-	2-+	$^{1}D_{2}$			3	0 1	-	_	-	0- 1+	3	³D3
0	3	3	0 1	+	-	+	0~ 1+	3+-	¹ F ₃	1	3	2	0 1	+	+	+	0+ 1~	2++	3F ₂
0	4	4	0 1		+	+	0+ 1-	4~+	$^{1}G_{4}$			3	0 1	+	+	+	0+ 1-	3++	3F ₃
1	0	1	0 1	-	_	+	0- 1+	1	3S1			4	0 1	· +	+	+ -	0+ 1-	4++	³ F ₄
1	1	0	0 1	+	+	+	0+ 1-	0++	3P_0	1	4	3	0 1	-	-	- +	1+	3	${}^{3}G_{3}$
		1	0 1	+	+	+	0+ 1-	1++	³ P ₁			4	0 1	-	-	-	0- 1+	4	3G_4
		2	0 1	+	+	+	0+ 1-	2++	³ P ₂			5	0 1	-	-	 +	0- 1+	5	³G,