• [1]

    J. Cogan, M. Kagan, E. Strauss et al., JHEP 02, 118 (2015)

  • [2]

    L. G. Almeida, M. Backović, M. Cliche et al., JHEP 07, 086 (2015)

  • [3]

    L. de Oliveira, M. Kagan, L. Mackey et al., JHEP 07, 069 (2016)

  • [4]

    P. Baldi, K. Cranmer, T. Faucett et al., Eur. Phys. J. C 76(5), 235 (2016)

  • [5]

    P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, JHEP 01, 110 (2017)

  • [6]

    G. Kasieczka, T. Plehn, M. Russell et al., JHEP 05, 006 (2017)

  • [7]

    L. M. Dery, B. Nachman, F. Rubbo et al., JHEP 05, 145 (2017)

  • [8]

    G. Louppe, K. Cho, C. Becot et al., JHEP 01, 057 (2019)

  • [9]

    A. Butter, G. Kasieczka, T. Plehn et al., SciPost Phys. 5(3), 028 (2018)

  • [10]

    E. M. Metodiev, B. Nachman, and J. Thaler, JHEP 10, 174 (2017)

  • [11]

    J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra, JHEP 11, 163 (2017)

  • [12]

    L. Moore, K. Nordström, S. Varma et al., SciPost Phys. 7(3), 036 (2019)

  • [13]

    T. Heimel, G. Kasieczka, T. Plehn et al., SciPost Phys. 6(3), 030 (2019)

  • [14]

    P. T. Komiske, E. M. Metodiev, and J. Thaler, JHEP 01, 121 (2019)

  • [15]

    H. Qu and L. Gouskos, Phys. Rev. D 101(5), 056019 (2020)

  • [16]

    A. Butter et al., SciPost Phys. 7, 014 (2019)

  • [17]

    E. A. Moreno, O. Cerri, J. M. Duarte et al., Eur. Phys. J. C 80(1), 58 (2020)

  • [18]

    Y. C. J. Chen, C. W. Chiang, G. Cottin et al., Phys. Rev. D 101(5), 053001 (2020)

  • [19]

    V. Mikuni and F. Canelli, Eur. Phys. J. Plus 135(6), 463 (2020)

  • [20]

    J. S. H. Lee, I. Park, I. J. Watson et al., J. Korean Phys. Soc. 84, 427 (2024)

  • [21]

    F. A. Dreyer and H. Qu, JHEP 03, 052 (2021)

  • [22]

    L. Anzalone, T. Diotalevi, and D. Bonacorsi, (2022). DOI: 10.1088/2632-2153/ac917c

  • [23]

    S. K. Choi, J. Li, C. Zhang et al., Phys. Rev. D 108(11), 116002 (2023)

  • [24]

    A. Elwood, D. Krücker, and M. Shchedrolosiev, J. Phys. Conf. Ser. 1525, 012110 (2020)

  • [25]

    P. Baldi, P. Sadowski, and D. Whiteson, Nature Commun. 5, 4308 (2014)

  • [26]

    A. Aurisano, A. Radovic, D. Rocco et al., JINST 11(09), P09001 (2016)

  • [27]

    W. Bhimji, S. A. Farrell, T. Kurth et al., J. Phys. Conf. Ser. 1085(4), 042034 (2018)

  • [28]

    P. Abratenko et al., Phys. Rev. D 103(9), 092003 (2021)

  • [29]

    J. Li, T. Li, and F. Z. Xu, JHEP 04, 156 (2021)

  • [30]

    Y. Zhu, H. Liang, Y. Wang et al., Eur. Phys. J. C 84(2), 152 (2024)

  • [31]

    E. Buhmann, C. Ewen, G. Kasieczka et al., Phys. Rev. D 109(5), 055015 (2024)

  • [32]

    S. Song, J. Chen, J. Liu et al., JINST 19(04), P04033 (2024)

  • [33]

    C. L. Cheng, G. Singh, and B. Nachman, Incorporating Physical Priors into Weakly-Supervised Anomaly Detection, (2024), arXiv: 2405.08889

  • [34]

    C. Li et al., Accelerating Resonance Searches via Signature-Oriented Pre-training, (2024), arXiv: 2405.12972

  • [35]

    L. de Oliveira, M. Paganini, and B. Nachman, Comput. Softw. Big Sci. 1(1), 4 (2017)

  • [36]

    M. Paganini, L. de Oliveira, and B. Nachman, Phys. Rev. Lett. 120(4), 042003 (2018)

  • [37]

    M. Paganini, L. de Oliveira, and B. Nachman, Phys. Rev. D 97(1), 014021 (2018)

  • [38]

    P. Baldi, L. Blecher, A. Butter et al., SciPost Phys. 13(3), 064 (2022)

  • [39]

    C. Jiang, S. Qian, and H. Qu, SciPost Phys. 18, 195 (2025)

  • [40]

    D. Kobylianskii, N. Soybelman, E. Dreyer et al., Phys. Rev. D 110, 072003 (2024)

  • [41]

    M. Feickert and B. Nachman, A Living Review of Machine Learning for Particle Physics, (2021), arXiv: 2102.02770

  • [42]

    J. Alwall, R. Frederix, S. Frixione et al., JHEP 07, 079 (2014)

  • [43]

    T. Sjöstrand, S. Ask, J.R. Christiansen et al., Comput. Phys. Commun. 191, 159 (2015)

  • [44]

    J. de Favereau, C. Delaere, P. Demin et al., JHEP 02, 057 (2014)

  • [45]

    R. Brun, F. Rademakers, P. Canal et al., root-project/root: v6.18/02, (2020), DOI: https://doi.org/10.5281/zenodo. 3895860

  • [46]

    J. Ansel, E. Yang, H. He et al., in 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24) (ACM, 2024). DOI: 10.1145/3620665.3640366. URL https://pytorch.org/assets/pytorch2-2.pdf

  • [47]

    M. Abadi, A. Agarwal, P. Barham et al., TensorFlow: Large-scale machine learning on heterogeneous systems, (2015). URL https://www.tensorflow.org/. Software available from tensorflow.org

  • [48]

    L. Benato et al., Comput. Softw. Big Sci. 6(1), 9 (2022)

  • [49]

    Y. C. Guo, F. Feng, A. Di et al., Comput. Phys. Commun. 294, 108957 (2024)

  • [50]

    J. Brehmer, F. Kling, I. Espejo et al., Comput. Softw. Big Sci. 4(1), 3 (2020)

  • [51]

    J. Brehmer, K. Cranmer, I. Espejo et al., J. Phys. Conf. Ser. 1525(1), 012022 (2020)

  • [52]

    J. Pivarski, P. Das, C. Burr et al., scikit-hep/uproot: 3.12.0, (2020). DOI: https://doi.org/10.5281/zenodo.3952728

  • [53]

    F. Chollet et al., Keras. https://keras.io (2015)

  • [54]

    J. Pivarski, I. Osborne, I. Ifrim et al., Awkward Array, (2018). DOI: https://doi.org/10.5281/zenodo.4341376

  • [55]

    A. J. Larkoski, I. Moult, and B. Nachman, Phys. Rept. 841, 1 (2020)

  • [56]

    A. Das, P. Konar, and A. Thalapillil, JHEP 02, 083 (2018)

  • [57]

    A. Bhardwaj, A. Das, P. Konar et al., J. Phys. G 47(7), 075002 (2020)

  • [58]

    S. Chakraborty, M. Mitra, and S. Shil, Phys. Rev. D 100(1), 015012 (2019)

  • [59]

    L. Buonocore, U. Haisch, P. Nason et al., Phys. Rev. Lett. 125(23), 231804 (2020)

  • [60]

    V. S. Ngairangbam, A. Bhardwaj, P. Konar et al., Eur. Phys. J. C 80(11), 1055 (2020)

  • [61]

    L. Buitinck, G. Louppe, M. Blondel et al., in ECML PKDD Workshop: Languages for Data Mining and Machine Learning, (2013), pp. 108–122

  • [62]

    A. Hocker et al., TMVA - Toolkit for Multivariate Data Analysis, (2007)

  • [63]

    T. Chen and C. Guestrin, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (ACM, New York, NY, USA, 2016), KDD’16, pp. 785–794. DOI: 10.1145/2939672. 2939785

  • [64]

    M. Guillame-Bert, S. Bruch, R. Stotz et al., in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023, (2023), pp. 4068–4077. DOI: 10.1145/3580305.3599933